Effect of High-Flow Nasal Cannula Oxygen vs Standard Oxygen Therapy on Mortality in Patients With Respiratory Failure Due to COVID-19: The SOHO-COVID Randomized Clinical Trial.
Autor: | Frat JP; CHU de Poitiers, Médecine Intensive Réanimation, Poitiers, France.; INSERM, CIC-1402, ALIVE, Poitiers, France; Université de Poitiers, Faculté de Médecine et de Pharmacie de Poitiers, Poitiers, France.; CRICS-TriggerSEP F-CRIN Research Network., Quenot JP; CHU Dijon-Bourgogne, Médecine Intensive-Réanimation, Dijon, France.; Equipe Lipness, Centre de Recherche INSERM UMR1231 et LabEx LipSTIC, Université de Bourgogne-Franche Comté, Dijon, France.; INSERM, CIC 1432, Module Épidémiologie Clinique, Université de Bourgogne-Franche Comté, Dijon, France., Badie J; Hopital Nord Franche-Comte, Montbeliard, France., Coudroy R; CHU de Poitiers, Médecine Intensive Réanimation, Poitiers, France.; INSERM, CIC-1402, ALIVE, Poitiers, France; Université de Poitiers, Faculté de Médecine et de Pharmacie de Poitiers, Poitiers, France., Guitton C; CH du Mans, Réanimation Médico-Chirurgicale, Le Mans, France.; Faculté de Santé, Université d'Angers, Angers, France., Ehrmann S; CHRU Tours, Médecine Intensive Réanimation, Tours, France.; CIC INSERM 1415, Université de Tours, Tours, France.; CRICS-TriggerSEP F-CRIN Research Network.; Centre d'étude des Pathologies Respiratoires, INSERM U1100, Université de Tours, Tours, France., Gacouin A; CHU de Rennes, Hôpital Pontchaillou, Service des Maladies Infectieuses et Réanimation Médicale, Rennes, France., Merdji H; Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, Médecine Intensive-Réanimation, Strasbourg, France.; Université Strasbourg (UNISTRA), Faculté de Médecine, INSERM UMR 1260, Regenerative Nanomedecine, FMTS, Strasbourg, France., Auchabie J; CH de Cholet, Service de Réanimation Polyvalente, Cholet, France., Daubin C; CHU de Caen, Médecine Intensive Réanimation, Caen, France., Dureau AF; GHR Mulhouse Sud-Alsace, Médecine Intensive Réanimation, Mulhouse, France., Thibault L; Groupe Hospitalier Sud de la Réunion, Médecine Intensive Réanimation, Saint Pierre, France., Sedillot N; CH de Bourg-en-Bresse, Service de Réanimation, Bourg-en-Bresse, France., Rigaud JP; CH de Dieppe, Médecine Intensive Réanimation, Dieppe, France., Demoule A; AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Médecine Intensive et Réanimation (Département R3S) and Sorbonne Université, Paris, France.; INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France., Fatah A; Groupement Hospitalier Nord-Dauphiné, Service de Réanimation, Bourgoin-Jallieu, France., Terzi N; CHU Grenoble Alpes, Médecine Intensive Réanimation, Grenoble, France.; INSERM, Université Grenoble-Alpes, U1042, HP2, Grenoble, France., Simonin M; Hôpital Saint-Joseph Saint-Luc, Réanimation Polyvalente, Lyon, France., Danjou W; CHU La Croix Rousse, Hospices civils de Lyon, Médecine Intensive Réanimation, Lyon, France., Carteaux G; AP-HP, CHU Henri Mondor, Médecine Intensive Réanimation, Créteil, France.; Université Paris Est Créteil, Faculté de Santé, Groupe de Recherche Clinique CARMAS, Créteil, France.; INSERM, Unité UMR 955, IMRB, Créteil, France., Guesdon C; CH de Pau, Réanimation polyvalente, Pau, France., Pradel G; CH Henri Mondor d'Aurillac, Service de Réanimation, Aurillac, France., Besse MC; CH de Bourges, Réanimation polyvalente, Bourges, France., Reignier J; CHU de Nantes, Médecine Intensive Réanimation, Nantes, France., Beloncle F; CHU d'Angers, Département de Médecine Intensive-Réanimation et Médecine Hyperbare, Angers, France., La Combe B; Groupe Hospitalier Bretagne Sud, Service de Réanimation polyvalente, Lorient, France., Prat G; CHU de Brest, Médecine Intensive Réanimation, Brest, France., Nay MA; CHR d'Orléans, Médecine Intensive Réanimation, Orléans, France., de Keizer J; INSERM, CIC-1402, Poitiers, France; Université de Poitiers, Faculté de Médecine et de Pharmacie de Poitiers, Poitiers, France., Ragot S; INSERM, CIC-1402, Poitiers, France; Université de Poitiers, Faculté de Médecine et de Pharmacie de Poitiers, Poitiers, France., Thille AW; CHU de Poitiers, Médecine Intensive Réanimation, Poitiers, France.; INSERM, CIC-1402, ALIVE, Poitiers, France; Université de Poitiers, Faculté de Médecine et de Pharmacie de Poitiers, Poitiers, France. |
---|---|
Jazyk: | angličtina |
Zdroj: | JAMA [JAMA] 2022 Sep 27; Vol. 328 (12), pp. 1212-1222. |
DOI: | 10.1001/jama.2022.15613 |
Abstrakt: | Importance: The benefit of high-flow nasal cannula oxygen (high-flow oxygen) in terms of intubation and mortality in patients with respiratory failure due to COVID-19 is controversial. Objective: To determine whether the use of high-flow oxygen, compared with standard oxygen, could reduce the rate of mortality at day 28 in patients with respiratory failure due to COVID-19 admitted in intensive care units (ICUs). Design, Setting, and Participants: The SOHO-COVID randomized clinical trial was conducted in 34 ICUs in France and included 711 patients with respiratory failure due to COVID-19 and a ratio of partial pressure of arterial oxygen to fraction of inspired oxygen equal to or below 200 mm Hg. It was an ancillary trial of the ongoing original SOHO randomized clinical trial, which was designed to include patients with acute hypoxemic respiratory failure from all causes. Patients were enrolled from January to December 2021; final follow-up occurred on March 5, 2022. Interventions: Patients were randomly assigned to receive high-flow oxygen (n = 357) or standard oxygen delivered through a nonrebreathing mask initially set at a 10-L/min minimum (n = 354). Main Outcomes and Measures: The primary outcome was mortality at day 28. There were 13 secondary outcomes, including the proportion of patients requiring intubation, number of ventilator-free days at day 28, mortality at day 90, mortality and length of stay in the ICU, and adverse events. Results: Among the 782 randomized patients, 711 patients with respiratory failure due to COVID-19 were included in the analysis (mean [SD] age, 61 [12] years; 214 women [30%]). The mortality rate at day 28 was 10% (36/357) with high-flow oxygen and 11% (40/354) with standard oxygen (absolute difference, -1.2% [95% CI, -5.8% to 3.4%]; P = .60). Of 13 prespecified secondary outcomes, 12 showed no significant difference including in length of stay and mortality in the ICU and in mortality up until day 90. The intubation rate was significantly lower with high-flow oxygen than with standard oxygen (45% [160/357] vs 53% [186/354]; absolute difference, -7.7% [95% CI, -14.9% to -0.4%]; P = .04). The number of ventilator-free days at day 28 was not significantly different between groups (median, 28 [IQR, 11-28] vs 23 [IQR, 10-28] days; absolute difference, 0.5 days [95% CI, -7.7 to 9.1]; P = .07). The most common adverse events were ventilator-associated pneumonia, occurring in 58% (93/160) in the high-flow oxygen group and 53% (99/186) in the standard oxygen group. Conclusions and Relevance: Among patients with respiratory failure due to COVID-19, high-flow nasal cannula oxygen, compared with standard oxygen therapy, did not significantly reduce 28-day mortality. Trial Registration: ClinicalTrials.gov Identifier: NCT04468126. |
Databáze: | MEDLINE |
Externí odkaz: |