Autor: |
Hidalgo-Rosa Y; Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, 7820436 Santiago, Chile.; ANID - Millennium Science Initiative Program, Millennium Nuclei on Catalytic Process towards Sustainable Chemistry (CSC), https://www.iniciativamilenio.cl/en/home_en/., Mena-Ulecia K; Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Ave. Rudecindo Ortega 02950, 4800000 Temuco, Chile.; Núcleo de Investigación en Bioproductos y Materiales Avenzados (BIOMA), Facultad de Ingeniería, Universidad Católica de Temuco, Ave. Rudecindo Ortega 02950, 4800000 Temuco, Chile., Treto-Suárez MA; Instituto de Ciencias Químicas Aplicadas, Departamento de Física y Química, Facultad de Ingeniería, Universidad Autónoma de Chile, Av. Alemania 01090, 4810101 Temuco, Chile., Schott E; Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, 7820436 Santiago, Chile.; ANID - Millennium Science Initiative Program, Millennium Nuclei on Catalytic Process towards Sustainable Chemistry (CSC), https://www.iniciativamilenio.cl/en/home_en/., Páez-Hernández D; Center of Applied Nanosciences (CANS), Universidad Andres Bello, Ave. República #275, 8370146 Santiago, Chile., Zarate X; Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Av. Pedro de Valdivia 425, 7500912 Santiago, Chile. |
Abstrakt: |
The current research shows that the excited-state dynamics of the antenna ligand, both in the interacting system sensor/analyte and in the sensor without analyte, is a safe tool for elucidating the detection principle of the luminescent lanthanide-based metal-organic framework sensors. In this report the detection principle of the luminescence quenching mechanism in two Tb-based MOFs sensors is elucidated. The first system is a luminescent Tb-MOF [Tb(BTTA) 1.5 (H 2 O) 4.5 ] n (H 2 BTTA = 2,5-bis(1H-1,2,4-triazol-1-yl) terephthalic acid) selective to nitrobenzene (NB), labeled as Tb-1 . The second system is {[Tb(DPYT)(BPDC) 1/2 (NO 3 )]·H 2 O} n (DPYT = 2,5-di(pyridin-4-yl) terephthalic acid, BPDC = biphenyl-4,4'-dicarboxylic acid), reported as a selective chemical sensor to nitromethane (NM) in situ , labeled as Tb-2 . The luminescence quenching of the MOFs is promoted by intermolecular interactions with the analytes that induce destabilization of the T 1 electronic state of the linker "antenna", altering thus the sensitization pathways of the Tb atoms. This study demonstrates the value of host-guest interaction simulations and the rate constants of the radiative and nonradiative processes in understanding and elucidating the sensing mechanism in Ln-MOF sensors. |