Autor: |
de Bougrenet de la Tocnaye JL; Optics Department, Institut Mines-Télécom Atlantique, Technopôle Brest Iroise, CS 83818, CEDEX 03, 29238 Brest, Brittany, France., Nourrit V; Optics Department, Institut Mines-Télécom Atlantique, Technopôle Brest Iroise, CS 83818, CEDEX 03, 29238 Brest, Brittany, France., Lahuec C; Optics Department, Institut Mines-Télécom Atlantique, Technopôle Brest Iroise, CS 83818, CEDEX 03, 29238 Brest, Brittany, France.; Laboratoire des Sciences et Techniques de l'Information, de la Communication et de la Connaissance, CNRS UMR 6285, 29238 Brest, Brittany, France. |
Abstrakt: |
Oculometric data, such as gaze direction, pupil size and accommodative change, play a key role nowadays in the analysis of cognitive load and attentional activities, in particular with the development of Integrated Visual Augmentation Systems in many application domains, such as health, defense and industry. Such measurements are most frequently obtained by different devices, most of them requiring steady eye and body positions and controlled lighting conditions. Recent advances in smart contact lens (SCL) technology have demonstrated the ability to achieve highly reliable and accurate measurements, preserving user mobility, for instance in measuring gaze direction. In this paper, we discuss how these three key functions can be implemented and combined in the same SCL, considering the limited volume and energy consumption constraints. Some technical options are discussed and compared in terms of their ability to be implemented, taking advantage of recent developments in the field. |