Atomistic Simulation of the Ion-Assisted Deposition of Silicon Dioxide Thin Films.

Autor: Grigoriev FV; Research Computing Center, M.V. Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia.; Moscow Center for Fundamental and Applied Mathematics, M.V. Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia., Sulimov VB; Research Computing Center, M.V. Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia.; Moscow Center for Fundamental and Applied Mathematics, M.V. Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia., Tikhonravov AV; Research Computing Center, M.V. Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia.; Moscow Center for Fundamental and Applied Mathematics, M.V. Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia.
Jazyk: angličtina
Zdroj: Nanomaterials (Basel, Switzerland) [Nanomaterials (Basel)] 2022 Sep 19; Vol. 12 (18). Date of Electronic Publication: 2022 Sep 19.
DOI: 10.3390/nano12183242
Abstrakt: A systematic study of the most significant parameters of the ion-assisted deposited silicon dioxide films is carried out using the classical molecular dynamics method. The energy of the deposited silicon and oxygen atoms corresponds to the thermal evaporation of the target; the energy of the assisting oxygen ions is 100 eV. It is found that an increase in the flow of assisting ions to approximately 10% of the flow of deposited atoms leads to an increase in density and refractive index by 0.5 g/cm 3 and 0.1, respectively. A further increase in the flux of assisting ions slightly affects the film density and density profile. The concentration of point defects, which affect the optical properties of the films, and stressed structural rings with two or three silicon atoms noticeably decrease with an increase in the flux of assisting ions. The film growth rate somewhat decreases with an increase in the assisting ions flux. The dependence of the surface roughness on the assisting ions flux is investigated. The anisotropy of the deposited films, due to the difference in the directions of motion of the deposited atoms and assisting ions, is estimated using the effective medium approach.
Databáze: MEDLINE