Autor: |
Armendáriz-Ontiveros MM; Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Ciudad Obregón 85000, Mexico., Villegas-Peralta Y; Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Ciudad Obregón 85000, Mexico., Madueño-Moreno JE; Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Ciudad Obregón 85000, Mexico., Álvarez-Sánchez J; Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Ciudad Obregón 85000, Mexico., Dévora-Isiordia GE; Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Ciudad Obregón 85000, Mexico., Sánchez-Duarte RG; Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Ciudad Obregón 85000, Mexico., Madera-Santana TJ; Centro de Investigación y Desarrollo A.C., Hermosillo 83304, Mexico. |
Jazyk: |
angličtina |
Zdroj: |
Membranes [Membranes (Basel)] 2022 Aug 31; Vol. 12 (9). Date of Electronic Publication: 2022 Aug 31. |
DOI: |
10.3390/membranes12090851 |
Abstrakt: |
Reverse osmosis (RO) desalination is a technology that is commonly used to mitigate water scarcity problems; one of its disadvantages is the bio-fouling of the membranes used, which reduces its performance. In order to minimize this problem, this study prepared modified thin film composite (TFC) membranes by the incorporation of chitosan-silver particles (CS-Ag) of different molecular weights, and evaluated them in terms of their anti-biofouling and desalination performances. The CS-Ag were obtained using ionotropic gelation, and were characterized by Fourier transform infrared spectroscopy (FTIR), high-resolution scanning electron microscopy (HR-SEM), energy-dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA) and dynamic light scattering (DLS). The modified membranes were synthetized by the incorporation of the CS-Ag using the interfacial polymerization method. The membranes (MCS-Ag) were characterized by Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and contact angle. Bactericidal tests by total cell count were performed using Bacillus halotolerans MCC1, and anti-adhesion properties were confirmed through biofilm cake layer thickness and total organic carbon (%). The desalination performance was defined by permeate flux, hydraulic resistance, salt rejection and salt permeance by using 2000 and 5000 mg L -1 of NaCl. The MCS-Ag-L presented superior permeate flux and salt rejection (63.3% and 1% higher, respectively), as well as higher bactericidal properties (76% less in total cell count) and anti-adhesion capacity (biofilm thickness layer 60% and total organic carbon 75% less, compared with the unmodified membrane). The highest hydraulic resistance value was for MCS-Ag-M. In conclusion, the molecular weight of CS-Ag significantly influences the desalination and the antimicrobial performances of the membranes; as the molecular weight decreases, the membranes' performances increase. This study shows a possible alternative for increasing membrane useful life in the desalination process. |
Databáze: |
MEDLINE |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|