Autor: |
Imtiyaz K; Department of Bioscience, Genome Biology Lab, New Delhi, India., Husain Rahmani A; Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia., Alsahli MA; Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia., Almatroodi SA; Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia., Rizvi MMA; Department of Bioscience, Genome Biology Lab, New Delhi, India. |
Abstrakt: |
Fisetin, a natural flavonoid molecule, has been shown to have anticancer properties against various malignancies. In this investigation, we discovered that Fisetin decreased cell viability of both the treated skin cancer cell lines A375 and A431 in a dose and time-dependent manner. The IC 50 values ranging from 57.60 µM ± 6.59 to 41.70 µM ± 1.25 in A375 and 48.70 µM ± 5.49 to 33.67 µM ± 1.03 for A431 at the observed time ranging between 24 h to 72 h of treatment remained quite enthusiastic when compared with the normal HEK 293 cells. Fisetin significantly decreased colony formation and migratory ability of the cancer cells. Flow cytometry analysis revealed that Fisetin significantly restricted the progression of skin cancer cells in the G 0 / G 1 phase of the cell cycle and induced cells to undergo apoptosis by increasing reactive oxygen species, decreasing mitochondrial membrane potential, and elevating the count of early and late apoptotic cells. Our in silico studies of molecular docking followed by molecular dynamics simulation found that the interactions and stability of MTH1 protein with Fisetin further showed a considerable binding affinity for MTH1 (-11.4 kcal/mol) and developed stable complexes maintained throughout 100 ns trajectories. Our western blot analysis endorsed this. We found that Fisetin downregulated the expression levels of MTH1 also in addition, it played a crucial role in regulation of apoptotic events in cancer cells. We therefore, conclude that Fisetin anticancer properties against skin cancer cells are mediated through MTH1 inhibition followed by ATM and P53 upregulation.Communicated by Ramaswamy H. Sarma. |