Body Surface Potential Mapping during Ventricular Depolarization in Rats after Acute Exhaustive Exercise.

Autor: Ivonin AG; Department of Comparative Cardiology - Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences , Syktyvkar - Federação Russa., Smirnova SL; Department of Comparative Cardiology - Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences , Syktyvkar - Federação Russa., Roshchevskaya IM; Department of Comparative Cardiology - Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences , Syktyvkar - Federação Russa.; Laboratory of Pharmacological Screening - Research Zakusov Institute of Pharmacology , Moscow - Federação Russa.
Jazyk: Portuguese; English
Zdroj: Arquivos brasileiros de cardiologia [Arq Bras Cardiol] 2022 Sep 12. Date of Electronic Publication: 2022 Sep 12.
DOI: 10.36660/abc.20211058
Abstrakt: Background: Exhaustive physical exercise can cause substantial changes in the electrical properties of the myocardium.
Objective: To evaluate, using body surface potential mapping, the electrical activity of the heart in rats during ventricular depolarization after acute exhaustive exercise.
Methods: Twelve-week-old male rats were submitted to acute treadmill exercise at 36 m/min until exhaustion. Unipolar electrocardiograms (ECGs) from the torso surface were recorded in zoletil-anesthetized rats three to five days before (Pre-Ex), 5 and 10 minutes after exhaustive exercise (Post-Ex 5 and Post-Ex 10, respectively) simultaneously with ECGs in limb leads. The instantaneous body surface potential maps (BSPMs) were analyzed during ventricular depolarization. P values <0.05 were considered statistically significant.
Results: Compared with Pre-Ex, an early completion of the second inversion of potential distributions, an early completion of ventricular depolarization, as well as a decrease in the duration of the middle phase and the total duration of ventricular depolarization on BSPMs were revealed at Post-Ex 5. Also, compared with Pre-Ex, an increase in the amplitude of negative BSPM extremum at the R-wave peak on the ECG in lead II (RII-peak) and a decrease in the amplitude of negative BSPM extremum at 3 and 4 ms after RII-peak were showed at Post-Ex 5. At Post-Ex 10, parameters of BSPMs did not differ from those at Pre-Ex.
Conclusion: In rats, acute exhaustive exercise causes reversible changes in the temporal and amplitude characteristics of BSPMs during ventricular depolarization, most likely related to alterations in the excitation of the main mass of the ventricular myocardium.
Databáze: MEDLINE