Uncertainty quantification for ecological models with random parameters.
Autor: | Reimer JR; Department of Mathematics, University of Utah, Salt Lake City, Utah, USA.; School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA., Adler FR; Department of Mathematics, University of Utah, Salt Lake City, Utah, USA.; School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA., Golden KM; Department of Mathematics, University of Utah, Salt Lake City, Utah, USA., Narayan A; Department of Mathematics, University of Utah, Salt Lake City, Utah, USA.; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA. |
---|---|
Jazyk: | angličtina |
Zdroj: | Ecology letters [Ecol Lett] 2022 Oct; Vol. 25 (10), pp. 2232-2244. Date of Electronic Publication: 2022 Sep 06. |
DOI: | 10.1111/ele.14095 |
Abstrakt: | There is often considerable uncertainty in parameters in ecological models. This uncertainty can be incorporated into models by treating parameters as random variables with distributions, rather than fixed quantities. Recent advances in uncertainty quantification methods, such as polynomial chaos approaches, allow for the analysis of models with random parameters. We introduce these methods with a motivating case study of sea ice algal blooms in heterogeneous environments. We compare Monte Carlo methods with polynomial chaos techniques to help understand the dynamics of an algal bloom model with random parameters. Modelling key parameters in the algal bloom model as random variables changes the timing, intensity and overall productivity of the modelled bloom. The computational efficiency of polynomial chaos methods provides a promising avenue for the broader inclusion of parametric uncertainty in ecological models, leading to improved model predictions and synthesis between models and data. (© 2022 John Wiley & Sons Ltd.) |
Databáze: | MEDLINE |
Externí odkaz: |