In Situ Sol-Gel Synthesis of Unique Silica Structures Using Airborne Assembly: Implications for In-Air Reactive Manufacturing.
Autor: | Barker CR; Department of Earth Sciences, Royal Holloway University of London, Queens Building, Egham, Surrey TW20 0EX, U.K.; STFC, Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire, OX11 0FA, U.K., Lewns FK; School of Dentistry, University of Birmingham, 5 Mill Pool Way, Birmingham, B5 7EG, U.K., Poologasundarampillai G; School of Dentistry, University of Birmingham, 5 Mill Pool Way, Birmingham, B5 7EG, U.K., Ward AD; STFC, Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire, OX11 0FA, U.K. |
---|---|
Jazyk: | angličtina |
Zdroj: | ACS applied nano materials [ACS Appl Nano Mater] 2022 Aug 26; Vol. 5 (8), pp. 11699-11706. Date of Electronic Publication: 2022 Aug 17. |
DOI: | 10.1021/acsanm.2c02683 |
Abstrakt: | Optical trapping enables the real-time manipulation and observation of morphological evolution of individual particles during reaction chemistry. Here, optical trapping was used in combination with Raman spectroscopy to conduct airborne assembly and kinetic experiments. Micro-droplets of alkoxysilane were levitated in air prior to undergoing either acid- or base-catalyzed sol-gel reaction chemistry to form silica particles. The evolution of the reaction was monitored in real-time; Raman and Mie spectroscopies confirmed the in situ formation of silica particles from alkoxysilane droplets as the product of successive hydrolysis and condensation reactions, with faster reaction kinetics in acid catalysis. Hydrolysis and condensation were accompanied by a reduction in droplet volume and silica formation. Two airborne particles undergoing solidification could be assembled into unique 3D structures such as dumb-bell shapes by manipulating a controlled collision. Our results provide a pipeline combining spectroscopy with optical microscopy and nanoscale FIB-SEM imaging to enable chemical and structural insights, with the opportunity to apply this methodology to probe structure formation during reactive inkjet printing. Competing Interests: The authors declare no competing financial interest. (© 2022 The Authors. Published by American Chemical Society.) |
Databáze: | MEDLINE |
Externí odkaz: |