Artificial intelligence based health indicator extraction and disease symptoms identification using medical hypothesis models.

Autor: Sathish Kumar L; School of Computing Science and Engineering, VIT University, Bhopal, India., Routray S; Department of Computer Science and Engineering, School of Engineering, Indrashil University, Rajpur, Mehsana, Gujarat India., Prabu AV; Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Guntur, India., Rajasoundaran S; School of Computing Science and Engineering, VIT University, Bhopal, India., Pandimurugan V; School of Computing, Department of Networking and Communications, SRMIST, Kattankulathur Campus, Chennai, 603203 India., Mukherjee A; Department of Computer Science, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic., Al-Numay MS; Department of Electrical Engineering, King Saud University, Riyadh, Saudi Arabia.
Jazyk: angličtina
Zdroj: Cluster computing [Cluster Comput] 2022 Aug 23, pp. 1-13. Date of Electronic Publication: 2022 Aug 23.
DOI: 10.1007/s10586-022-03697-x
Abstrakt: Patient health record analysis models assist the medical field to understand the current stands and medical needs. Similarly, collecting and analyzing the disease features are the best practice for encouraging medical researchers to understand the research problems. Various research works evolve the way of medical data analysis schemes to know the actual challenges against the diseases. The computer-based diagnosis models and medical data analysis models are widely applied to have a better understanding of different diseases. Particularly, the field of medical electronics needs appropriate health indicator extraction models in near future. The existing medical schemes support baseline solutions but lack optimal hypothesis-based solutions. This work describes the optimal hypothesis model and Akin procedures for health record users, to aid health sectors in clinical decision-making on health indications. This work proposes Medical Hypothesis and Health Indicators Extraction from Electronic Medical Records (EMR) and International Classification of Diseases (ICD-10) patient examination database using the Akin Method and Friendship method. In this Health Indicators and Disease Symptoms Extraction (HIDSE), the evidence checking procedures find and collect all possible medical evidence from the existing patient examination report. Akin Method is making the hypothesis decision from count-based evidence principles. The health indicators extraction scheme extracts all relevant information based on the health indicators query and partial input. Similarly, the friendship method is used for making information associations between medical data attributes. This Akin-Friendship model helps to build hypothesis structures and trait-based feature extraction principles. This is called as Composite Akin Friendship Model (CAFM). This proposed model consists of various test cases for developing the medical hypothesis systems. On the other hand, it provides limited accuracy in disease classification. In this regard, the proposed HIDSE implements Deep Learning (DL) based Akin Friendship Method (DLAFM) for improving the accuracy of this medical hypothesis model. The proposed DLAFM, Convolutional Neural Networks (CNN) associated Legacy Prediction Model for Health Indicator (LPHI) is developed to tune the CAFM principles. The results show the proposed health indicator extraction scheme has 8-10% of better system performance than other existing techniques.
Competing Interests: Conflict of interestThe submitted work is unpublished and the authors confirm no conflict of interest associated with this.
(© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.)
Databáze: MEDLINE