Intersubunit Coupling Enables Fast CO 2 -Fixation by Reductive Carboxylases.

Autor: DeMirci H; Biosciences Division, SLAC National Accelerator Laboratory Menlo Park, California 94025, United States.; PULSE Institute, SLAC National Accelerator Laboratory Menlo Park, California 94025, United States.; Department of Molecular Biology and Genetics, Koc University, 34450 Sariyer/Istanbul, Turkey., Rao Y; Biosciences Division, SLAC National Accelerator Laboratory Menlo Park, California 94025, United States.; Departamento de Físico Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4030000, Chile., Stoffel GM; Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, D-35043 Marburg, Germany., Vögeli B; Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, D-35043 Marburg, Germany., Schell K; Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, D-35043 Marburg, Germany., Gomez A; Departamento de Físico Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4030000, Chile., Batyuk A; Linac Coherent Light Source, SLAC National Accelerator Laboratory Menlo Park, California 94025, United States., Gati C; Biosciences Division, SLAC National Accelerator Laboratory Menlo Park, California 94025, United States.; Structural Biology Department, Stanford University Stanford, California 94305, United States., Sierra RG; Linac Coherent Light Source, SLAC National Accelerator Laboratory Menlo Park, California 94025, United States., Hunter MS; Linac Coherent Light Source, SLAC National Accelerator Laboratory Menlo Park, California 94025, United States., Dao EH; Biosciences Division, SLAC National Accelerator Laboratory Menlo Park, California 94025, United States.; PULSE Institute, SLAC National Accelerator Laboratory Menlo Park, California 94025, United States., Ciftci HI; PULSE Institute, SLAC National Accelerator Laboratory Menlo Park, California 94025, United States., Hayes B; Linac Coherent Light Source, SLAC National Accelerator Laboratory Menlo Park, California 94025, United States., Poitevin F; Linac Coherent Light Source, SLAC National Accelerator Laboratory Menlo Park, California 94025, United States., Li PN; Biosciences Division, SLAC National Accelerator Laboratory Menlo Park, California 94025, United States.; Electrical Engineering Department, Stanford University Stanford, California 94305, United States., Kaur M; Structural Biology Department, Stanford University Stanford, California 94305, United States., Tono K; RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan.; Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan., Saez DA; Departamento de Físico Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4030000, Chile.; Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción 00000, Chile., Deutsch S; U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, California 94720, United States., Yoshikuni Y; U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, California 94720, United States., Grubmüller H; Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany., Erb TJ; Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, D-35043 Marburg, Germany.; LOEWE Center for Synthetic Microbiology (SYNMIKRO), 35032 Marburg, Germany., Vöhringer-Martinez E; Departamento de Físico Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4030000, Chile., Wakatsuki S; Biosciences Division, SLAC National Accelerator Laboratory Menlo Park, California 94025, United States.; Structural Biology Department, Stanford University Stanford, California 94305, United States.
Jazyk: angličtina
Zdroj: ACS central science [ACS Cent Sci] 2022 Aug 24; Vol. 8 (8), pp. 1091-1101. Date of Electronic Publication: 2022 Apr 25.
DOI: 10.1021/acscentsci.2c00057
Abstrakt: Enoyl-CoA carboxylases/reductases (ECRs) are some of the most efficient CO 2 -fixing enzymes described to date. However, the molecular mechanisms underlying the extraordinary catalytic activity of ECRs on the level of the protein assembly remain elusive. Here we used a combination of ambient-temperature X-ray free electron laser (XFEL) and cryogenic synchrotron experiments to study the structural organization of the ECR from Kitasatospora setae . The K. setae ECR is a homotetramer that differentiates into a pair of dimers of open- and closed-form subunits in the catalytically active state. Using molecular dynamics simulations and structure-based mutagenesis, we show that catalysis is synchronized in the K. setae ECR across the pair of dimers. This conformational coupling of catalytic domains is conferred by individual amino acids to achieve high CO 2 -fixation rates. Our results provide unprecedented insights into the dynamic organization and synchronized inter- and intrasubunit communications of this remarkably efficient CO 2 -fixing enzyme during catalysis.
Competing Interests: The authors declare no competing financial interest.
(© 2022 The Authors. Published by American Chemical Society.)
Databáze: MEDLINE