The sound of drug delivery: Optoacoustic imaging in pharmacology.
Autor: | Liu N; Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich 81675, Germany; Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany; PET Center, Department of Nuclear Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China., Mishra K; Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany., Stiel AC; Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany., Gujrati V; Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich 81675, Germany; Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany., Ntziachristos V; Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich 81675, Germany; Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany; Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, Munich 80992, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany. Electronic address: bioimaging.translatum@tum.de. |
---|---|
Jazyk: | angličtina |
Zdroj: | Advanced drug delivery reviews [Adv Drug Deliv Rev] 2022 Oct; Vol. 189, pp. 114506. Date of Electronic Publication: 2022 Aug 20. |
DOI: | 10.1016/j.addr.2022.114506 |
Abstrakt: | Optoacoustic (photoacoustic) imaging offers unique opportunities for visualizing biological function in vivo by achieving high-resolution images of optical contrast much deeper than any other optical technique. The method detects ultrasound waves that are generated inside tissue by thermo-elastic expansion, i.e., the conversion of light absorption by tissue structures to ultrasound when the tissue is illuminated by the light of varying intensity. Listening instead of looking to light offers the major advantage of image formation with a resolution that obeys ultrasonic diffraction and not photon diffusion laws. While the technique has been widely used to explore contrast from endogenous photo-absorbing molecules, such as hemoglobin or melanin, the use of exogenous agents can extend applications to a larger range of biological and possible clinical applications, such as image-guided surgery, disease monitoring, and the evaluation of drug delivery, biodistribution, and kinetics. This review summarizes recent developments in optoacoustic agents, and highlights new functions visualized and potent pharmacology applications enabled with the use of external contrast agents. Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. (Copyright © 2022 Elsevier B.V. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |