Surface Characteristics and Microbial Adhesion in Polymethylmethacrylate for Denture Base Submitted to Antimicrobial Agents and Cleaning Agents: A Systematic Review.
Autor: | Teixeira ABV; Collaborate Professor, Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, Brazil., de Carvalho GG; Undergraduate Student, Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, Brazil., Dos Reis AC; Associate Professor, Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, Brazil. |
---|---|
Jazyk: | angličtina |
Zdroj: | The European journal of prosthodontics and restorative dentistry [Eur J Prosthodont Restor Dent] 2023 Feb 28; Vol. 31 (1), pp. 1-9. Date of Electronic Publication: 2023 Feb 28. |
DOI: | 10.1922/EJPRD_2386Teixeira09 |
Abstrakt: | This review aimed to identify the influence of antimicrobial and cleaning agents on surface characteristics such as surface free energy (SFE) and wettability, and microbial adhesion in polymethylmethacrylate (PMMA) for denture base. The review question, based on PICO, was: "Does intervention with antimicrobial and cleaning agents in PMMA influence the surface free energy, wettability, and consequently the microbial adhesion?" and the protocol was registered in Open Science Framework (osf. io/v3xgn). The search was performed in PubMed, Lilacs, Embase, Scopus, and Science Direct databases, using the terms: ("acrylic resin" OR PMMA) AND (antimicrobial OR antibacterial) AND ("electrostatic interaction" OR surface free energy) AND (biofilm OR "bacteria adhesion"), and resulted in 462 articles, of which 7 were included. The antimicrobials polypara-xylylene, carboxybetaine methacrylate, ethylene glycol methacrylate phosphate, and deposition of F and Ag ions in PMMA influenced the SFE and wettability. Denture cleaners reduced microbial adhesion. Five of the included studies evaluated the microbial adhesion, however, only two observed a direct relationship between SFE, wettability, and microbial adhesion. It was concluded that the intervention with antimicrobial and cleaning agents in PMMA can interfere in SFE and surface wettability, but no correlation was observed between microbial adhesion and these surface characteristics in PMMA. (Copyright© 2023 Dennis Barber Ltd.) |
Databáze: | MEDLINE |
Externí odkaz: |