Protein-Based Drug Delivery Nanomedicine Platforms: Recent Developments.
Autor: | Aljabali AAA; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163 - P.O. BOX 566, Jordan., Rezigue M; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163 - P.O. BOX 566, Jordan., Alsharedeh RH; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163 - P.O. BOX 566, Jordan., Obeid MA; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163 - P.O. BOX 566, Jordan., Mishra V; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India., Serrano-Aroca Á; Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, San Vicente Mártir, 46001 Valencia, Spain., Tambuwala MM; Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, England, UK. |
---|---|
Jazyk: | angličtina |
Zdroj: | Pharmaceutical nanotechnology [Pharm Nanotechnol] 2022 Nov 15; Vol. 10 (4), pp. 257-267. |
DOI: | 10.2174/2211738510666220817120307 |
Abstrakt: | Background: Naturally occurring protein cages, both viral and non-viral assemblies, have been developed for various pharmaceutical applications. Protein cages are ideal platforms as they are compatible, biodegradable, bioavailable, and amenable to chemical and genetic modification to impart new functionalities for selective targeting or tracking of proteins. The ferritin/ apoferritin protein cage, plant-derived viral capsids, the small Heat shock protein, albumin, soy and whey protein, collagen, and gelatin have all been exploited and characterized as drugdelivery vehicles. Protein cages come in many shapes and types with unique features such as unmatched uniformity, size, and conjugations. Objectives: The recent strategic development of drug delivery will be covered in this review, emphasizing polymer-based, specifically protein-based, drug delivery nanomedicine platforms. The potential and drawbacks of each kind of protein-based drug-delivery system will also be highlighted. Methods: Research examining the usability of nanomaterials in the pharmaceutical and medical sectors were identified by employing bibliographic databases and web search engines. Results: Rings, tubes, and cages are unique protein structures that occur in the biological environment and might serve as building blocks for nanomachines. Furthermore, numerous virions can undergo reversible structural conformational changes that open or close gated pores, allowing customizable accessibility to their core and ideal delivery vehicles. Conclusion: Protein cages' biocompatibility and their ability to be precisely engineered indicate they have significant potential in drug delivery and intracellular administration. (Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.) |
Databáze: | MEDLINE |
Externí odkaz: |