Hypoxia mimetics restore bone biomineralisation in hyperglycaemic environments.
Autor: | Rezaei A; Division of Surgery & Interventional Science, University College London, 9th Floor Royal Free Hospital, London, NW3 2QG, UK., Li Y; Division of Surgery & Interventional Science, University College London, 9th Floor Royal Free Hospital, London, NW3 2QG, UK., Turmaine M; Department of Cell & Developmental Biology, University College London, London, WC1E 6BT, UK., Bertazzo S; Department of Medical Physics & Biomedical Engineering, University College London, London, WC1E 6BT, UK., Howard CA; Department of Physics & Astronomy, University College London, London, WC1E 6BT, UK., Arnett TR; Department of Cell & Developmental Biology, University College London, London, WC1E 6BT, UK., Shakib K; Division of Surgery & Interventional Science, University College London, 9th Floor Royal Free Hospital, London, NW3 2QG, UK. k.shakib@ucl.ac.uk., Jell G; Division of Surgery & Interventional Science, University College London, 9th Floor Royal Free Hospital, London, NW3 2QG, UK. g.jell@ucl.ac.uk. |
---|---|
Jazyk: | angličtina |
Zdroj: | Scientific reports [Sci Rep] 2022 Aug 17; Vol. 12 (1), pp. 13944. Date of Electronic Publication: 2022 Aug 17. |
DOI: | 10.1038/s41598-022-18067-1 |
Abstrakt: | Diabetic patients have an increased risk of fracture and an increased occurrence of impaired fracture healing. Diabetic and hyperglycaemic conditions have been shown to impair the cellular response to hypoxia, via an inhibited hypoxia inducible factor (HIF)-1α pathway. We investigated, using an in vitro hyperglycaemia bone tissue engineering model (and a multidisciplinary bone characterisation approach), the differing effects of glucose levels, hypoxia and chemicals known to stabilise HIF-1α (CoCl (© 2022. The Author(s).) |
Databáze: | MEDLINE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |