Autor: |
Malik H; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada., Wolff MD; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada., Teskey GC; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.; Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada., Mychasiuk R; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.; Department of Psychology, University of Calgary, Calgary, Alberta, Canada.; Department of Neuroscience, Monash University, Melbourne, Victoria, Australia. |
Abstrakt: |
Repetitive mild traumatic brain injuries (RmTBIs) are increasingly recognized to have long-term neurological sequelae in a significant proportion of patients. Individuals that have had RmTBIs exhibit a variety of sensory, cognitive, or behavioral consequences that can negatively impact quality of life. Brain tissue oxygen levels ([Formula: see text]) are normally maintained through exquisite regulation of blood supply to stay within the normoxic zone (18-30 mmHg in the rat hippocampus). However, during neurological events in which brain tissue oxygen levels leave the normoxic zone, neuronal dysfunction and behavioral deficits have been observed, and are frequently related to poorer prognoses. The oxygenation response in the brain after RmTBIs/repeated concussions has been poorly characterized, with most preliminary research limited to the neocortex. Furthermore, the mechanisms by which RmTBIs impact changes to brain oxygenation and vice versa remain to be determined. In the current study, we demonstrate that upon receiving RmTBIs, rats exhibit posttraumatic, electrographic seizures in the hippocampus, without behavioral (clinical) seizures, that are accompanied by a long-lasting period of hyperoxygenation. These electrographic seizures and the ensuing hyperoxic episodes are associated with deficits in working memory and motor coordination that were reversible through attenuation of the posttraumatic and postictal (postseizure) hyperoxia, via administration of a vasoconstricting agent, the calcium channel agonist Bay K8644. We propose that the posttraumatic period characterized by brain oxygenation levels well above the normoxic zone, may be the basis for some of the common symptoms associated with RmTBIs. NEW & NOTEWORTHY We monitor oxygenation and electrographic activity in the hippocampus, immediately before and after mild traumatic brain injury. We demonstrate that as the number of injuries increases from 1 to 3, the proportion of rats that exhibit electrographic seizures and hyperoxia increases. Moreover, the presence of electrographic seizures and hyperoxia are associated with postinjury behavioral impairments, and if the hyperoxia is blocked with Bay K8644, the behavioral deficits are eliminated. |