Autor: |
Damayanti D; Department of Chemical Engineering and Materials Science, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li, Taoyuan 32003, Taiwan.; Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan 35365, Indonesia., Saputri DR; Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan 35365, Indonesia., Marpaung DSS; Department of Biosystems Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan 35365, Indonesia.; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li, Taoyuan 32003, Taiwan., Yusupandi F; Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan 35365, Indonesia., Sanjaya A; Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan 35365, Indonesia., Simbolon YM; Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan 35365, Indonesia., Asmarani W; Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan 35365, Indonesia., Ulfa M; Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan 35365, Indonesia., Wu HS; Department of Chemical Engineering and Materials Science, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li, Taoyuan 32003, Taiwan. |
Abstrakt: |
The excessive amount of global plastic produced over the past century, together with poor waste management, has raised concerns about environmental sustainability. Plastic recycling has become a practical approach for diminishing plastic waste and maintaining sustainability among plastic waste management methods. Chemical and mechanical recycling are the typical approaches to recycling plastic waste, with a simple process, low cost, environmentally friendly process, and potential profitability. Several plastic materials, such as polypropylene, polystyrene, polyvinyl chloride, high-density polyethylene, low-density polyethylene, and polyurethanes, can be recycled with chemical and mechanical recycling approaches. Nevertheless, due to plastic waste's varying physical and chemical properties, plastic waste separation becomes a challenge. Hence, a reliable and effective plastic waste separation technology is critical for increasing plastic waste's value and recycling rate. Integrating recycling and plastic waste separation technologies would be an efficient method for reducing the accumulation of environmental contaminants produced by plastic waste, especially in industrial uses. This review addresses recent advances in plastic waste recycling technology, mainly with chemical recycling. The article also discusses the current recycling technology for various plastic materials. |