A Broadband View of the Sea Surface Height Wavenumber Spectrum.

Autor: Villas Bôas AB; California Institute of Technology La Jolla CA USA.; Colorado School of Mines Golden CO USA.; Scripps Institution of Oceanography University of California San Diego La Jolla CA USA., Lenain L; Scripps Institution of Oceanography University of California San Diego La Jolla CA USA., Cornuelle BD; Scripps Institution of Oceanography University of California San Diego La Jolla CA USA., Gille ST; Scripps Institution of Oceanography University of California San Diego La Jolla CA USA., Mazloff MR; Scripps Institution of Oceanography University of California San Diego La Jolla CA USA.
Jazyk: angličtina
Zdroj: Geophysical research letters [Geophys Res Lett] 2022 Feb 28; Vol. 49 (4), pp. e2021GL096699. Date of Electronic Publication: 2022 Feb 16.
DOI: 10.1029/2021GL096699
Abstrakt: Airborne lidar altimetry can measure the sea surface height (SSH) over scales ranging from hundreds of kilometers to a few meters. Here, we analyze the spectrum of SSH observations collected during an airborne lidar campaign conducted off the California coast. We show that the variance in the surface wave band can be over 20 times larger than the variance at submesoscales and that the observed SSH variability is sensitive to the directionality of surface waves. Our results support the hypothesis that there is a spectral gap between meso-to-submesoscale motions and small-scale surface waves and also indicate that aliasing of surface waves into lower wavenumbers may complicate the interpretation of SSH spectra. These results highlight the importance of better understanding the contributions of different physics to the SSH variability and considering the SSH spectrum as a continuum in the context of future satellite altimetry missions.
(© 2022 The Authors.)
Databáze: MEDLINE