Effect of black seeds (Nigella sativa) on inflammatory and immunomodulatory markers in Plasmodium berghei-infected mice.
Autor: | Ojueromi OO; Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, Akure, Ondo State, Nigeria., Oboh G; Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, Akure, Ondo State, Nigeria., Ademosun AO; Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, Akure, Ondo State, Nigeria. |
---|---|
Jazyk: | angličtina |
Zdroj: | Journal of food biochemistry [J Food Biochem] 2022 Nov; Vol. 46 (11), pp. e14300. Date of Electronic Publication: 2022 Jul 14. |
DOI: | 10.1111/jfbc.14300 |
Abstrakt: | Nigella sativa, a core dietary supplement and food additive in folklore is one of the most broadly studied seed plants in the global nutraceutical sector. Malaria infection impairs the ability of principal cells of the immune system to trigger an efficient inflammatory and immune response. Ninety-six mice, weighing 20-25 g, were grouped into 12 consisting of 8 animals each. The mice were infected with standard inoculum of the strain NK65 Plasmodium berghei (chloroquine sensitive) and the percentage parasitemia suppression were evaluated. The individual effect of black seed supplemented diet and its combinatory effect with chloroquine (CQ) were investigated on reactive oxygen species (ROS), glutathione peroxidase (GPx), reduced glutathione (GSH), glutathione-S-transferase (GST), serum immunoglobulins (IgG and IgM), and the hematological parameters (hemoglobin, packed cell volume, and red blood cell count) in P. berghei infected mice. The inflammatory cytokines, tumor necrosis factor (TNF-α), interleukin (IL-6 and IL-10), as well as IgG and IgM were assayed in the serum. The mice temperature and behavioral changes were observed. Infected mice treated with the dietary supplementation of black seed with a percentage inclusion (2.5%, 5%, 10%) showed significantly decreased parasitemia and ROS levels (p < 0.05) compared with the untreated mice. The result demonstrated a significant suppression in the pro-inflammatory cytokines (TNF-α, IL-6) levels and a notable elevation in the anti-inflammatory cytokine (IL-10), antioxidant markers as well as the immunoglobulin levels of the P. berghei-infected mice treated with black seed. The study revealed that black seed enhanced host antioxidant status, modulated inflammatory and immune response by regulating some inflammatory cytokines and immunomodulatory mediators. PRACTICAL APPLICATIONS: Black seed (Nigella sativa) has been a dietary supplement and natural remedy for many centuries. Inflammatory and immune diseases are the most notable cause of mortality in the world and more than 50% of deaths have been attributed to it. However, there is paucity of information on the effect of N. sativa on anti-inflammatory and immunomodulatory ability during malaria infection. The result suggests that N. sativa produced antioxidant, anti-inflammatory, and immunomodulatory effect in Plasmodium berghei-infected mice via the participation of glutathione antioxidant system, serum antibodies, and some inflammatory cytokines. (© 2022 Wiley Periodicals LLC.) |
Databáze: | MEDLINE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |