Molecular species of oxidized phospholipids in brain differentiate between learning- and memory impaired and unimpaired aged rats.
Autor: | Narzt MS; Department of Dermatology, Medical University of Vienna, Vienna, Austria.; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria., Kremslehner C; Department of Dermatology, Medical University of Vienna, Vienna, Austria., Golabi B; Department of Dermatology, Medical University of Vienna, Vienna, Austria., Nagelreiter IM; Department of Dermatology, Medical University of Vienna, Vienna, Austria.; Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria., Malikovic J; Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria., Hussein AM; Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria.; Programme for Proteomics, Paracelsus Private Medical University, Salzburg, Austria.; Department of Zoology, Faculty of Science, Al-Azhar University, Assiut, Egypt., Plasenzotti R; Center for Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna, Himberg, Austria., Korz V; Programme for Proteomics, Paracelsus Private Medical University, Salzburg, Austria., Lubec G; Programme for Proteomics, Paracelsus Private Medical University, Salzburg, Austria., Gruber F; Department of Dermatology, Medical University of Vienna, Vienna, Austria. florian.gruber@meduniwien.ac.at., Lubec J; Programme for Proteomics, Paracelsus Private Medical University, Salzburg, Austria. jana.aradska@gmail.com. |
---|---|
Jazyk: | angličtina |
Zdroj: | Amino acids [Amino Acids] 2022 Sep; Vol. 54 (9), pp. 1311-1326. Date of Electronic Publication: 2022 Jul 11. |
DOI: | 10.1007/s00726-022-03183-z |
Abstrakt: | Loss of cognitive function is a typical consequence of aging in humans and rodents. The extent of decline in spatial memory performance of rats, assessed by a hole-board test, reaches from unimpaired and comparable to young individuals to severely memory impaired. Recently, proteomics identified peroxiredoxin 6, an enzyme important for detoxification of oxidized phospholipids, as one of several synaptosomal proteins discriminating between aged impaired and aged unimpaired rats. In this study, we investigated several components of the epilipidome (modifications of phospholipids) of the prefrontal cortex of young, aged memory impaired (AI) and aged unimpaired (AU) rats. We observed an age-related increase in phospholipid hydroperoxides and products of phospholipid peroxidation, including reactive aldehydophospholipids. This increase went in hand with cortical lipofuscin autofluorescence. The memory impairment, however, was paralleled by additional specific changes in the aged rat brain epilipidome. There was a profound increase in phosphocholine hydroxides, and a significant decrease in phosphocholine-esterified azelaic acid. As phospholipid-esterified fatty acid hydroxides, and especially those deriving from arachidonic acid are both markers and effectors of inflammation, the findings suggest that in addition to age-related reactive oxygen species (ROS) accumulation, age-related impairment of spatial memory performance has an additional and distinct (neuro-) inflammatory component. (© 2022. The Author(s).) |
Databáze: | MEDLINE |
Externí odkaz: |