Laccaria bicolor pectin methylesterases are involved in ectomycorrhiza development with Populus tremula × Populus tremuloides.
Autor: | Chowdhury J; Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden.; Department of Plant Physiology, Umeå Plant Science Center, Umeå University, 90187, Umeå, Sweden., Kemppainen M; Laboratory of Molecular Mycology, Department of Science and Technology, Institute of Basic and Applied Microbiology, National University of Quilmes (UNQ), and National Scientific and Technical Research Council (CONICET), B1876BXD, Bernal, Argentina., Delhomme N; Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden., Shutava I; Department of Plant Physiology, Umeå Plant Science Center, Umeå University, 90187, Umeå, Sweden., Zhou J; Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden.; Department of Plant Physiology, Umeå Plant Science Center, Umeå University, 90187, Umeå, Sweden., Takahashi J; Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden., Pardo AG; Laboratory of Molecular Mycology, Department of Science and Technology, Institute of Basic and Applied Microbiology, National University of Quilmes (UNQ), and National Scientific and Technical Research Council (CONICET), B1876BXD, Bernal, Argentina., Lundberg-Felten J; Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden. |
---|---|
Jazyk: | angličtina |
Zdroj: | The New phytologist [New Phytol] 2022 Oct; Vol. 236 (2), pp. 639-655. Date of Electronic Publication: 2022 Jul 27. |
DOI: | 10.1111/nph.18358 |
Abstrakt: | The development of ectomycorrhizal (ECM) symbioses between soil fungi and tree roots requires modification of root cell walls. The pectin-mediated adhesion between adjacent root cells loosens to accommodate fungal hyphae in the Hartig net, facilitating nutrient exchange between partners. We investigated the role of fungal pectin modifying enzymes in Laccaria bicolor for ECM formation with Populus tremula × Populus tremuloides. We combine transcriptomics of cell-wall-related enzymes in both partners during ECM formation, immunolocalisation of pectin (Homogalacturonan, HG) epitopes in different methylesterification states, pectin methylesterase (PME) activity assays and functional analyses of transgenic L. bicolor to uncover pectin modification mechanisms and the requirement of fungal pectin methylesterases (LbPMEs) for ECM formation. Immunolocalisation identified remodelling of pectin towards de-esterified HG during ECM formation, which was accompanied by increased LbPME1 expression and PME activity. Overexpression or RNAi of the ECM-induced LbPME1 in transgenic L. bicolor lines led to reduced ECM formation. Hartig Nets formed with LbPME1 RNAi lines were shallower, whereas those formed with LbPME1 overexpressors were deeper. This suggests that LbPME1 plays a role in ECM formation potentially through HG de-esterification, which initiates loosening of adjacent root cells to facilitate Hartig net formation. (© 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.) |
Databáze: | MEDLINE |
Externí odkaz: |