In Silico Trial of Computed Tomography-Guided Stereotactic Adaptive Radiation Therapy (CT-STAR) for the Treatment of Abdominal Oligometastases.

Autor: Schiff JP; Washington University School of Medicine in St Louis, Department of Radiation Oncology, St Louis, Missouri., Stowe HB; Washington University School of Medicine in St Louis, Department of Radiation Oncology, St Louis, Missouri., Price A; Washington University School of Medicine in St Louis, Department of Radiation Oncology, St Louis, Missouri., Laugeman E; Washington University School of Medicine in St Louis, Department of Radiation Oncology, St Louis, Missouri., Hatscher C; Washington University School of Medicine in St Louis, Department of Radiation Oncology, St Louis, Missouri., Hugo GD; Washington University School of Medicine in St Louis, Department of Radiation Oncology, St Louis, Missouri., Badiyan SN; Washington University School of Medicine in St Louis, Department of Radiation Oncology, St Louis, Missouri., Kim H; Washington University School of Medicine in St Louis, Department of Radiation Oncology, St Louis, Missouri., Robinson CG; Washington University School of Medicine in St Louis, Department of Radiation Oncology, St Louis, Missouri., Henke LE; Washington University School of Medicine in St Louis, Department of Radiation Oncology, St Louis, Missouri. Electronic address: henke.lauren@wustl.edu.
Jazyk: angličtina
Zdroj: International journal of radiation oncology, biology, physics [Int J Radiat Oncol Biol Phys] 2022 Dec 01; Vol. 114 (5), pp. 1022-1031. Date of Electronic Publication: 2022 Jun 26.
DOI: 10.1016/j.ijrobp.2022.06.078
Abstrakt: Purpose: We conducted a prospective, in silico clinical imaging study (NCT04008537) to evaluate the feasibility of cone beam computed tomography-guided stereotactic adaptive radiation therapy (CT-STAR) for the treatment of abdominal oligometastases. We hypothesized that CT-STAR produces improved dosimetry compared with nonadapted CT-stereotactic body radiation therapy (SBRT).
Methods and Materials: Eight patients receiving stereotactic body radiation therapy for abdominal oligometastatic disease received 5 additional kV cone beam CTs on the ETHOS system. These additional cone beam CTs were used for imaging during an emulator treatment session. Initial plans were created based on their simulation (P I ) and emulated adaptive plans were based on anatomy-of-the-day. The prescription was 50 Gy out of 5 fractions. Organ-at-risk (OAR) constraints were prioritized over planning target volume coverage under a strict isotoxicity approach. The P I was applied to the patient's anatomy-of-the-day and compared with the reoptimized adaptive plans using dose-volume histogram metrics, with selection of the superior plan. Feasibility was defined as completion of the adaptive workflow and compliance with strict OAR constraints in ≥80% of fractions. Fractions were performed under time pressures by a physician and physicist to mimic the adaptive process.
Results: CT-STAR was feasible, with successful workflow completion in 38 out of 40 (95%) fractions. P I application to daily anatomy created OAR constraint violations in 30 out of 40 (75%) fractions. There were 8 stomach, 18 duodenum, 16 small bowel, and 11 large bowel P I OAR constraint violations. In contrast, OAR violations occurred in 2 out of 40 (5%) adaptive plans (both small bowel violations, both improved from the P I ). CT-STAR also improved gross tumor volume V100 and D95 coverage in 25 out of 40 (63%) and 20 out of 40 (50%) fractions, respectively. Zero out of 40 (0%) fractions were deemed nonfeasible due to poor image quality and/or inability to delineate structures. Adaptation time per fraction was a median of 22.59 minutes (10.97-47.23).
Conclusions: CT-STAR resolved OAR hard constraint violations and/or improved target coverage in silico compared with nonadapted CT-guided stereotactic body radiation therapy for the ablation of abdominal oligometastatic disease. Although limitations of this study include its small sample size and in silico design, the consistently high-quality cone beam CT images captured and comparable timing metrics to prior adaptive studies suggest that CT- STAR is a viable treatment paradigm for the ablation of abdominal oligometastatic disease. Clinical trials are in development to further evaluate CT-STAR in the clinic.
(Copyright © 2022 Elsevier Inc. All rights reserved.)
Databáze: MEDLINE