Autor: |
Justić H; Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.; Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia., Barić A; Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.; Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia., Šimunić I; Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia., Radmilović M; Department of Ophthalmology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia *These authors contributed equally to this work., Ister R; Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.; Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia., Škokić S; Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia., Dobrivojević Radmilović M; Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.; Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia. |
Abstrakt: |
Cerebral and retinal ischemia share similar pathogenesis and epidemiology, each carrying both acute and prolonged risk of the other and often co-occurring. The most used preclinical stroke models, the Koizumi and Longa middle cerebral artery occlusion (MCAO) methods, have reported retinal damage with great variability, leaving the disruption of retinal blood supply via MCAO poorly investigated, even providing conflicting assumptions on the origin of the ophthalmic artery in rodents. The aim of our study was to use longitudinal in vivo magnetic resonance assessment of cerebral and retinal vascular perfusion after the ischemic injury to clarify whether and how the Koizumi and Longa methods induce retinal ischemia and how they differ in terms of cerebral and retinal lesion evolution. We provided anatomical evidence of the origin of the ophthalmic artery in mice from the pterygopalatine artery. Following the Koizumi surgery, retinal responses to ischemia overlapped with those in the brain, resulting in permanent damage. In contrast, the Longa method produced only extensive cerebral lesions, with greater tissue loss than in the Koizumi method. Additionally, our data suggests the Koizumi method should be redefined as a model of ischemia with chronic hypoperfusion rather than of ischemia and reperfusion. |