Artificial intelligence-assisted colorimetric lateral flow immunoassay for sensitive and quantitative detection of COVID-19 neutralizing antibody.

Autor: Tong H; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China., Cao C; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China., You M; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China. Electronic address: youminli@xjtu.edu.cn., Han S; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China; Department of Gastroenterology of Honghui Hospital, Xi'an, 710054, PR China., Liu Z; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China; Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China., Xiao Y; Clinical Laboratory, Xi'an Jiaotong University School Hospital, Xi'an, 710061, PR China., He W; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, PR China., Liu C; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China., Peng P; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China; Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China., Xue Z; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China; Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China., Gong Y; Diyinan Biotech Company, Suzhou, 215000, PR China., Yao C; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China; Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China., Xu F; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China. Electronic address: fengxu@mail.xjtu.edu.cn.
Jazyk: angličtina
Zdroj: Biosensors & bioelectronics [Biosens Bioelectron] 2022 Oct 01; Vol. 213, pp. 114449. Date of Electronic Publication: 2022 Jun 08.
DOI: 10.1016/j.bios.2022.114449
Abstrakt: Currently, vaccination is the most effective medical measure to improve group immunity and prevent the rapid spread of COVID-19. Since the individual difference of vaccine effectiveness is inevitable, it is necessary to evaluate the vaccine effectiveness of every vaccinated person to ensure the appearance of herd immunity. Here, we developed an artificial intelligent (AI)-assisted colorimetric polydopamine nanoparticle (PDA)-based lateral flow immunoassay (LFIA) platform for the sensitive and accurate quantification of neutralizing antibodies produced from vaccinations. The platform integrates PDA-based LFIA and a smartphone-based reader to test the neutralizing antibodies in serum, where an AI algorithm is also developed to accurately and quantitatively analyze the results. The developed platform achieved a quantitative detection with 160 ng/mL of detection limit and 625-10000 ng/mL of detection range. Moreover, it also successfully detected totally 50 clinical serum samples, revealing a great consistency with the commercial ELISA kit. Comparing with commercial gold nanoparticle-based LFIA, our PDA-based LFIA platform showed more accurate quantification ability for the clinical serum. Therefore, we envision that the AI-assisted PDA-based LFIA platform with sensitive and accurate quantification ability is of great significance for large-scale evaluation of vaccine effectiveness and other point-of-care immunoassays.
(Copyright © 2022 Elsevier B.V. All rights reserved.)
Databáze: MEDLINE