Autor: |
Karen-Ng LP; Center for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK.; Oral Cancer Research & Coordinating Center (OCRCC), Faculty of Dentistry, Universiti Malaya, Kuala Lumpur 50603, Malaysia., Ahmad US; Center for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK., Gomes L; Center for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK., Hunter KD; Academic Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK.; Liverpool Head and Neck Centre, Molecular and Clinical Medicine, University of Liverpool, Liverpool L1 8JX, UK., Wan H; Center for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK., Hagi-Pavli E; Center for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK., Parkinson EK; Center for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK. |
Abstrakt: |
Potentially pre-malignant oral lesions (PPOLs) are composed of keratinocytes that are either mortal (MPPOL) or immortal (IPPOL) in vitro. We report here that MPPOL, but not generally IPPOL, keratinocytes upregulate various extracellular tumor-promoting cytokines (interleukins 6 and 8) and prostaglandins E1 (ePGE1) and E2 (ePGE2) relative to normal oral keratinocytes (NOKs). ePGE upregulation in MPPOL was independent of PGE receptor status and was associated with some but not all markers of cellular senescence. Nevertheless, ePGE upregulation was dependent on the senescence program, cyclo-oxygenase 2 (COX2) and p38 mitogen-activated protein kinase and was partially regulated by hydrocortisone. Following senescence in the absence of p16 INK4A , ePGEs accumulated in parallel with a subset of tumor promoting cytokine and metalloproteinase (MMP) transcripts, all of which were ablated by ectopic telomerase. Surprisingly, ataxia telangiectasia mutated (ATM) function was not required for ePGE upregulation and was increased in expression in IPPOL keratinocytes in line with its recently reported role in telomerase function. Only ePGE1 was dependent on p53 function, suggesting that ePGEs 1 and 2 are regulated differently in oral keratinocytes. We show here that ePGE2 stimulates IPPOL keratinocyte proliferation in vitro. Therefore, we propose that MPPOL keratinocytes promote the progression of IPPOL to oral SCC in a pre-cancerous field by supplying PGEs, interleukins and MMPs in a paracrine manner. Our results suggest that the therapeutic targeting of COX-2 might be enhanced by strategies that target keratinocyte senescence. |