Global relationships in tree functional traits.
Autor: | Maynard DS; Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland. dan.s.maynard@gmail.com., Bialic-Murphy L; Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland., Zohner CM; Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland., Averill C; Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland., van den Hoogen J; Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland., Ma H; Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland., Mo L; Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland., Smith GR; Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland.; Department of Biology, Stanford University, Stanford, CA, 94305, USA., Acosta ATR; Department of Science, Roma Tre University, Rome, Italy., Aubin I; Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste Marie, ON, P6A 2E5, Canada., Berenguer E; Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK.; Lancaster Environment Centre, Lancaster University, Lancaster, UK., Boonman CCF; Department of Aquatic Ecology & Environmental Biology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands., Catford JA; Department of Geography, King's College London, 30 Aldwych, London, WC2B 4BG, UK., Cerabolini BEL; Department of Biotechnologies and Life Sciences (DBSV), University of Insubria, 21100, Varese, Italy., Dias AS; Goethe University, Institute for Physical Geography, Altenhöferallee 1, 60438, Frankfurt am Main, Germany., González-Melo A; Biology Department, Faculty of Natural Sciences, Universidad del Rosario, Avenida carrera 24 # 63C-69, Bogotá, Colombia., Hietz P; Institute of Botany, University of Natural Resources and Life Sciences, Gregor Mendel St. 33, 1190, Vienna, Austria., Lusk CH; Environmental Research Institute, University of Waikato, Hamilton, New Zealand., Mori AS; Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8904, Japan., Niinemets Ü; Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Tartu, 51006, Estonia., Pillar VD; Department of Ecology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil., Pinho BX; AMAP, Univ Montpellier, INRAe, CIRAD, CNRS, IRD, Montpellier, France.; Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil., Rosell JA; Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, A.P. 70-275, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico., Schurr FM; Institute of Landscape and Plant Ecology, University of Hohenheim, Ottilie-Zeller-Weg 2, D-70599, Stuttgart, Germany., Sheremetev SN; Komarov Botanical Institute, Prof. Popov str., 2, St. Petersburg, 197376, Russia., da Silva AC; Department of Forestry, Santa Catarina State University, Lages, SC, 88520-000, Brazil., Sosinski Ê; Embrapa Clima Temperado, Pelotas, RS, 96010-971, Brazil., van Bodegom PM; Institute of Environmental Science, Leiden University, 2333 CC, Leiden, the Netherlands., Weiher E; Department of Biology, University of Wisconsin - Eau Claire, Eau Claire, WI, 54702, USA., Bönisch G; Max Planck Institute for Biogeochemistry, 07745, Jena, Germany., Kattge J; Max Planck Institute for Biogeochemistry, 07745, Jena, Germany.; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany., Crowther TW; Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland. |
---|---|
Jazyk: | angličtina |
Zdroj: | Nature communications [Nat Commun] 2022 Jun 08; Vol. 13 (1), pp. 3185. Date of Electronic Publication: 2022 Jun 08. |
DOI: | 10.1038/s41467-022-30888-2 |
Abstrakt: | Due to massive energetic investments in woody support structures, trees are subject to unique physiological, mechanical, and ecological pressures not experienced by herbaceous plants. Despite a wealth of studies exploring trait relationships across the entire plant kingdom, the dominant traits underpinning these unique aspects of tree form and function remain unclear. Here, by considering 18 functional traits, encompassing leaf, seed, bark, wood, crown, and root characteristics, we quantify the multidimensional relationships in tree trait expression. We find that nearly half of trait variation is captured by two axes: one reflecting leaf economics, the other reflecting tree size and competition for light. Yet these orthogonal axes reveal strong environmental convergence, exhibiting correlated responses to temperature, moisture, and elevation. By subsequently exploring multidimensional trait relationships, we show that the full dimensionality of trait space is captured by eight distinct clusters, each reflecting a unique aspect of tree form and function. Collectively, this work identifies a core set of traits needed to quantify global patterns in functional biodiversity, and it contributes to our fundamental understanding of the functioning of forests worldwide. (© 2022. The Author(s).) |
Databáze: | MEDLINE |
Externí odkaz: |