A calcium-based plasticity model for predicting long-term potentiation and depression in the neocortex.

Autor: Chindemi G; Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland. giuseppe.chindemi@unige.ch., Abdellah M; Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland., Amsalem O; Department of Neurobiology, the Hebrew University of Jerusalem, Jerusalem, Israel.; Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA., Benavides-Piccione R; Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain.; Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain., Delattre V; Laboratory of Neural Microcircuitry, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland., Doron M; Edmond and Lily Safra Center for Brain Sciences, the Hebrew University of Jerusalem, Jerusalem, Israel., Ecker A; Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland., Jaquier AT; Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland., King J; Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland., Kumbhar P; Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland., Monney C; Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland., Perin R; Laboratory of Neural Microcircuitry, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland., Rössert C; Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland., Tuncel AM; Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland., Van Geit W; Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland., DeFelipe J; Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain.; Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain., Graupner M; Université de Paris, SPPIN - Saints-Pères Paris Institute for the Neurosciences, CNRS, Paris, France., Segev I; Department of Neurobiology, the Hebrew University of Jerusalem, Jerusalem, Israel.; Edmond and Lily Safra Center for Brain Sciences, the Hebrew University of Jerusalem, Jerusalem, Israel., Markram H; Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.; Laboratory of Neural Microcircuitry, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland., Muller EB; Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland. eilif.muller@umontreal.ca.; Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada. eilif.muller@umontreal.ca.; CHU Sainte-Justine Research Center, Montréal, QC, Canada. eilif.muller@umontreal.ca.; Quebec Artificial Intelligence Institute (Mila), Montréal, Canada. eilif.muller@umontreal.ca.
Jazyk: angličtina
Zdroj: Nature communications [Nat Commun] 2022 Jun 01; Vol. 13 (1), pp. 3038. Date of Electronic Publication: 2022 Jun 01.
DOI: 10.1038/s41467-022-30214-w
Abstrakt: Pyramidal cells (PCs) form the backbone of the layered structure of the neocortex, and plasticity of their synapses is thought to underlie learning in the brain. However, such long-term synaptic changes have been experimentally characterized between only a few types of PCs, posing a significant barrier for studying neocortical learning mechanisms. Here we introduce a model of synaptic plasticity based on data-constrained postsynaptic calcium dynamics, and show in a neocortical microcircuit model that a single parameter set is sufficient to unify the available experimental findings on long-term potentiation (LTP) and long-term depression (LTD) of PC connections. In particular, we find that the diverse plasticity outcomes across the different PC types can be explained by cell-type-specific synaptic physiology, cell morphology and innervation patterns, without requiring type-specific plasticity. Generalizing the model to in vivo extracellular calcium concentrations, we predict qualitatively different plasticity dynamics from those observed in vitro. This work provides a first comprehensive null model for LTP/LTD between neocortical PC types in vivo, and an open framework for further developing models of cortical synaptic plasticity.
(© 2022. The Author(s).)
Databáze: MEDLINE