Hydrazide Derivatives for Defect Passivation in Pure CsPbI 3 Perovskite Solar Cells.

Autor: Che Y; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy, Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China., Liu Z; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy, Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China., Duan Y; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy, Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China., Wang J; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy, Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China., Yang S; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy, Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China., Xu D; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy, Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China., Xiang W; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy, Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China., Wang T; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy, Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China., Yuan N; Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, China., Ding J; Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, China., Liu SF; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy, Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China.; Dalian National Laboratory for Clean Energy iChEM, Dalian Institute of Chemical Physics Chinese Academy of Sciences, Dalian, 116023, China.
Jazyk: angličtina
Zdroj: Angewandte Chemie (International ed. in English) [Angew Chem Int Ed Engl] 2022 Aug 15; Vol. 61 (33), pp. e202205012. Date of Electronic Publication: 2022 Jul 08.
DOI: 10.1002/anie.202205012
Abstrakt: All-inorganic CsPbI 3 perovskite presents preeminent chemical stability and a desirable band gap as the front absorber for perovskite/silicon tandem solar cells. Unfortunately, CsPbI 3 perovskite solar cells (PSCs) still show low efficiency due to high density of defects in solution-prepared CsPbI 3 films. Herein, three kinds of hydrazide derivatives (benzoyl hydrazine (BH), formohydrazide (FH) and benzamide (BA)) are designed to reduce the defect density and stabilize the phase of CsPbI 3 . Calculation and characterization results corroborate that the carboxyl and hydrazine groups in BH form strong chemical bonds with Pb 2+ ions, resulting in synergetic double coordination. In addition, the hydrazine group in the BH also forms a hydrogen bond with iodine to assist the coordination. Consequently, a high efficiency of 20.47 % is achieved, which is the highest PCE among all pure CsPbI 3 -based PSCs reported to date. In addition, an unencapsulated device showed excellent stability in ambient air.
(© 2022 Wiley-VCH GmbH.)
Databáze: MEDLINE