Methodology for the identification of relevant loci for milk traits in dairy cattle, using machine learning algorithms.
Autor: | Raschia MA; Instituto Nacional de Tecnología Agropecuaria, CICVyA-CNIA, Instituto de Genética 'Ewald A. Favret'. Hurlingham, Buenos Aires, Argentina., Ríos PJ; Universidad de Buenos Aires, Buenos Aires, Argentina.; Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina., Maizon DO; Instituto Nacional de Tecnología Agropecuaria, E.E.A. Anguil. Anguil, La Pampa, Argentina.; Facultad de Agronomía, Universidad Nacional de La Pampa, Argentina., Demitrio D; Instituto Nacional de Tecnología Agropecuaria, Dirección General de Sistemas de Información, Comunicación y Procesos - Gerencia de Informática y Gestión de la Información. Buenos Aires, Argentina.; Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina., Poli MA; Instituto Nacional de Tecnología Agropecuaria, CICVyA-CNIA, Instituto de Genética 'Ewald A. Favret'. Hurlingham, Buenos Aires, Argentina.; Facultad de Ciencias Agrarias y Veterinarias, Universidad del Salvador, Argentina. |
---|---|
Jazyk: | angličtina |
Zdroj: | MethodsX [MethodsX] 2022 May 16; Vol. 9, pp. 101733. Date of Electronic Publication: 2022 May 16 (Print Publication: 2022). |
DOI: | 10.1016/j.mex.2022.101733 |
Abstrakt: | Machine learning methods were considered efficient in identifying single nucleotide polymorphisms (SNP) underlying a trait of interest. This study aimed to construct predictive models using machine learning algorithms, to identify loci that best explain the variance in milk traits of dairy cattle. Further objectives involved validating the results by comparison with reported relevant regions and retrieving the pathways overrepresented by the genes flanking relevant SNPs. Regression models using XGBoost (XGB), LightGBM (LGB), and Random Forest (RF) algorithms were trained using estimated breeding values for milk production (EBV Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. (© 2022 The Authors.) |
Databáze: | MEDLINE |
Externí odkaz: |