Microcapsules of Shrimp Oil Using Kidney Bean Protein Isolate and κ-Carrageenan as Wall Materials with the Aid of Ultrasonication or High-Pressure Microfluidization: Characteristics and Oxidative Stability.

Autor: Gulzar S; International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90110, Thailand., Balange AK; QC Laboratory, Post-Harvest Technology, ICAR-Central Institute of Fisheries Education, Mumbai 400061, India., Nagarajarao RC; ICAR-Central Institute of Fisheries Education, Andheri West, Mumbai 400061, India., Zhao Q; College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China., Benjakul S; International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90110, Thailand.
Jazyk: angličtina
Zdroj: Foods (Basel, Switzerland) [Foods] 2022 May 16; Vol. 11 (10). Date of Electronic Publication: 2022 May 16.
DOI: 10.3390/foods11101431
Abstrakt: Emulsions containing shrimp oil (SO) at varying amounts were prepared in the presence of red kidney bean protein isolate (KBPI) and κ-carrageenan (KC) at a ratio of 1:0.1 ( w / w ). The emulsions were subjected to ultrasonication and high-pressure microfluidization to assist the encapsulation process. For each sample, ultrasonication was carried out for 15 min in continuous mode at 80% amplitude, whereas high-pressure microfluidization was operated at 7000 psi for 10 min. Ultrasonicated and microfluidized emulsions were finally spray-dried to prepare KBPI-KC-SO microcapsules. Moderate to high encapsulation efficiency (EE) ranging from 43.99 to 89.25% of SO in KPBI-KC-SO microcapsules was obtained and the microcapsules had good flowability. Particle size, PDI and zeta potential of KBPI-KC-SO microcapsules were 2.58-6.41 µm, 0.32-0.40 and -35.95--58.77 mV, respectively. Scanning electron microscopic (SEM) images visually demonstrated that the wall material/SO ratio and the emulsification method (ultrasonication vs microfluidization) had an impact on the size, shape and surface of the KBPI-KC-SO microcapsules. Encapsulation of SO in microcapsules was validated empirically using Fourier transform infrared (FTIR) analysis. Encapsulation of SO in KBPI-KC microcapsules imparted superior protection against oxidative deterioration of SO as witnessed by the higher retention of polyunsaturated fatty acids (PUFAs) and astaxanthin when compared to unencapsulated SO during extended storage at room temperature.
Databáze: MEDLINE