Autor: |
Gómez-Ramírez J; Institute of Biomedical Research Cadiz (INiBICA), Universidad de Cádiz, 11003 Cádiz, Spain., Fernández-Blázquez MA; Department of Biological and Health Psychology, Universidad Autónoma de Madrid, 28049 Madrid, Spain., González-Rosa JJ; Institute of Biomedical Research Cadiz (INiBICA), Universidad de Cádiz, 11003 Cádiz, Spain. |
Jazyk: |
angličtina |
Zdroj: |
Brain sciences [Brain Sci] 2022 Apr 29; Vol. 12 (5). Date of Electronic Publication: 2022 Apr 29. |
DOI: |
10.3390/brainsci12050579 |
Abstrakt: |
Normal aging is associated with changes in volumetric indices of brain atrophy. A quantitative understanding of age-related brain changes can shed light on successful aging. To investigate the effect of age on global and regional brain volumes and cortical thickness, 3514 magnetic resonance imaging scans were analyzed using automated brain segmentation and parcellation methods in elderly healthy individuals (69-88 years of age). The machine learning algorithm extreme gradient boosting (XGBoost) achieved a mean absolute error of 2 years in predicting the age of new subjects. Feature importance analysis showed that the brain-to-intracranial-volume ratio is the most important feature in predicting age, followed by the hippocampi volumes. The cortical thickness in temporal and parietal lobes showed a superior predictive value than frontal and occipital lobes. Insights from this approach that integrate model prediction and interpretation may help to shorten the current explanatory gap between chronological age and biological brain age. |
Databáze: |
MEDLINE |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|