The dynamic atmospheric and aeolian environment of Jezero crater, Mars.

Autor: Newman CE; Aeolis Research, Chandler, AZ, USA., Hueso R; Universidad del País Vasco UPV/EHU, Bilbao, Spain., Lemmon MT; Space Science Institute, Boulder, CO, USA., Munguira A; Universidad del País Vasco UPV/EHU, Bilbao, Spain., Vicente-Retortillo Á; Centro de Astrobiologia, INTA, Madrid, Spain., Apestigue V; INTA, Madrid, Spain., Martínez GM; Lunar and Planetary Institute, USRA, Houston, TX, USA.; University of Michigan, Ann Arbor, MI, USA., Toledo D; INTA, Madrid, Spain., Sullivan R; Cornell University, Ithaca, NY, USA., Herkenhoff KE; USGS Astrogeology Science Center, Flagstaff, AZ, USA., de la Torre Juárez M; Jet Propulsion Laboratory-California Institute of Technology, Pasadena, CA, USA., Richardson MI; Aeolis Research, Chandler, AZ, USA., Stott AE; ISAE-SUPAERO, Université de Toulouse, Toulouse, France., Murdoch N; ISAE-SUPAERO, Université de Toulouse, Toulouse, France., Sanchez-Lavega A; Universidad del País Vasco UPV/EHU, Bilbao, Spain., Wolff MJ; Space Science Institute, Boulder, CO, USA., Arruego I; INTA, Madrid, Spain., Sebastián E; Centro de Astrobiologia, INTA, Madrid, Spain., Navarro S; Centro de Astrobiologia, INTA, Madrid, Spain., Gómez-Elvira J; Centro de Astrobiologia, INTA, Madrid, Spain.; INTA, Madrid, Spain., Tamppari L; Jet Propulsion Laboratory-California Institute of Technology, Pasadena, CA, USA., Viúdez-Moreiras D; Centro de Astrobiologia, INTA, Madrid, Spain., Harri AM; Finnish Meteorological Institute, Helsinki, Finland., Genzer M; Finnish Meteorological Institute, Helsinki, Finland., Hieta M; Finnish Meteorological Institute, Helsinki, Finland., Lorenz RD; Johns Hopkins Applied Physics Lab, Laurel, MD, USA., Conrad P; Carnegie Institution for Science, Washington, DC, USA., Gómez F; Centro de Astrobiologia, INTA, Madrid, Spain., McConnochie TH; Space Science Institute, Boulder, CO, USA.; University of Maryland, College Park, MD, USA., Mimoun D; ISAE-SUPAERO, Université de Toulouse, Toulouse, France., Tate C; Cornell University, Ithaca, NY, USA., Bertrand T; LESIA, Observatoire de Paris, Meudon, France., Bell JF 3rd; Arizona State University, Tempe, AZ, USA., Maki JN; Jet Propulsion Laboratory-California Institute of Technology, Pasadena, CA, USA., Rodriguez-Manfredi JA; Centro de Astrobiologia, INTA, Madrid, Spain., Wiens RC; Los Alamos National Laboratory, Los Alamos, NM, USA.; Purdue University, West Lafayette, IN, USA., Chide B; IRAP-CNRS, Toulouse, France., Maurice S; IRAP-CNRS, Toulouse, France., Zorzano MP; Centro de Astrobiologia, INTA, Madrid, Spain., Mora L; Centro de Astrobiologia, INTA, Madrid, Spain., Baker MM; Smithsonian National Air and Space Museum, Washington, DC, USA., Banfield D; Cornell University, Ithaca, NY, USA.; NASA Ames, Mountain View, CA, USA., Pla-Garcia J; Space Science Institute, Boulder, CO, USA.; Centro de Astrobiologia, INTA, Madrid, Spain., Beyssac O; IMPMC, CNRS-Sorbonne Université, Paris, France., Brown A; Plancius Research, Severna Park, MD, USA., Clark B; Space Science Institute, Boulder, CO, USA., Lepinette A; Centro de Astrobiologia, INTA, Madrid, Spain., Montmessin F; LATMOS, Guyancourt, France., Fischer E; University of Michigan, Ann Arbor, MI, USA., Patel P; Jet Propulsion Laboratory-California Institute of Technology, Pasadena, CA, USA.; UCL, London, UK., Del Río-Gaztelurrutia T; Universidad del País Vasco UPV/EHU, Bilbao, Spain., Fouchet T; LESIA, Observatoire de Paris, Meudon, France., Francis R; Jet Propulsion Laboratory-California Institute of Technology, Pasadena, CA, USA., Guzewich SD; Goddard Space Flight Center, Greenbelt, MD, USA.
Jazyk: angličtina
Zdroj: Science advances [Sci Adv] 2022 May 27; Vol. 8 (21), pp. eabn3783. Date of Electronic Publication: 2022 May 25.
DOI: 10.1126/sciadv.abn3783
Abstrakt: Despite the importance of sand and dust to Mars geomorphology, weather, and exploration, the processes that move sand and that raise dust to maintain Mars' ubiquitous dust haze and to produce dust storms have not been well quantified in situ, with missions lacking either the necessary sensors or a sufficiently active aeolian environment. Perseverance rover's novel environmental sensors and Jezero crater's dusty environment remedy this. In Perseverance's first 216 sols, four convective vortices raised dust locally, while, on average, four passed the rover daily, over 25% of which were significantly dusty ("dust devils"). More rarely, dust lifting by nonvortex wind gusts was produced by daytime convection cells advected over the crater by strong regional daytime upslope winds, which also control aeolian surface features. One such event covered 10 times more area than the largest dust devil, suggesting that dust devils and wind gusts could raise equal amounts of dust under nonstorm conditions.
Databáze: MEDLINE