Edaravone Inhibits the Production of Reactive Oxygen Species in Phagocytosis- and PKC-Stimulated Granulocytes from Multiple Sclerosis Patients Edaravone Modulate Oxidative Stress in Multiple Sclerosis.

Autor: Villar-Delfino PH; Faculdade Santa Casa BH, Programa de Pós-Graduação Stricto Sensu em Medicina-Biomedicina, Santa Casa BH, Belo Horizonte, Minas Gerais, Brazil., Gomes NAO; Faculdade Santa Casa BH, Programa de Pós-Graduação Stricto Sensu em Medicina-Biomedicina, Santa Casa BH, Belo Horizonte, Minas Gerais, Brazil., Christo PP; Faculdade Santa Casa BH, Programa de Pós-Graduação Stricto Sensu em Medicina-Biomedicina, Santa Casa BH, Belo Horizonte, Minas Gerais, Brazil., Nogueira-Machado JA; Faculdade Santa Casa BH, Programa de Pós-Graduação Stricto Sensu em Medicina-Biomedicina, Santa Casa BH, Belo Horizonte, Minas Gerais, Brazil., Volpe CMO; Faculdade Santa Casa BH, Programa de Pós-Graduação Stricto Sensu em Medicina-Biomedicina, Santa Casa BH, Belo Horizonte, Minas Gerais, Brazil.
Jazyk: angličtina
Zdroj: Journal of central nervous system disease [J Cent Nerv Syst Dis] 2022 May 16; Vol. 14, pp. 11795735221092524. Date of Electronic Publication: 2022 May 16 (Print Publication: 2022).
DOI: 10.1177/11795735221092524
Abstrakt: Background: Oxidative stress is associated with the pathogenesis of MS. Edaravone (EDV) has been proposed as a therapeutic resource for central nervous system diseases, and it was effective in reducing oxidative stress. However, the antioxidant mechanisms of EDV are poorly studied.
Objective: This study aimed to evaluate the effects of EDV on resting, phagocytosis, and PKC-activated granulocytes derived from MS patients and a healthy control group.
Methods: The effects of EDV on ROS production in phagocytosis (ROS production in the presence of opsonized particles) and PKC-stimulated granulocytes were evaluated in a luminol-dependent chemiluminescence method. Calphostin C was used in some experiments to compare with those of EDV.
Results: EDV inhibited ROS production in phagocytosis of opsonized particles and PKC-stimulated granulocytes from MS patients and healthy control group. In the presence of calphostin C, the inhibition of ROS production was similar to that observed with EDV.
Conclusion: These findings suggest the involvement of EDV on the ROS-PKC-NOX signaling pathways modulating oxidative stress in MS. EDV represents a promising treatment option to control oxidative innate immune response for MS.
Competing Interests: Declaration of Conflicting Interests: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
(© The Author(s) 2022.)
Databáze: MEDLINE