Transferable Classical Force Field for Pure and Mixed Metal Halide Perovskites Parameterized from First-Principles.

Autor: Seijas-Bellido JA; Área de Química Física, Universidad Pablo de Olavide, Seville, 41013, Spain., Samanta B; Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel., Valadez-Villalobos K; Área de Química Física, Universidad Pablo de Olavide, Seville, 41013, Spain., Gallardo JJ; Departamento de Química Física, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, Cádiz E-11510, Spain., Navas J; Departamento de Química Física, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, Cádiz E-11510, Spain., Balestra SRG; Área de Química Física, Universidad Pablo de Olavide, Seville, 41013, Spain.; Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (ICMM-CSIC) c/Sor Juana Inés de la Cruz 3, Madrid, 28049, Spain., Madero Castro RM; Área de Química Física, Universidad Pablo de Olavide, Seville, 41013, Spain., Vicent-Luna JM; Materials Simulation and Modelling, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600MB, The Netherlands., Tao S; Materials Simulation and Modelling, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600MB, The Netherlands., Toroker MC; Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel., Anta JA; Área de Química Física, Universidad Pablo de Olavide, Seville, 41013, Spain.
Jazyk: angličtina
Zdroj: Journal of chemical information and modeling [J Chem Inf Model] 2022 Dec 26; Vol. 62 (24), pp. 6423-6435. Date of Electronic Publication: 2022 May 16.
DOI: 10.1021/acs.jcim.1c01506
Abstrakt: Many key features in photovoltaic perovskites occur in relatively long time scales and involve mixed compositions. This requires realistic but also numerically simple models. In this work we present a transferable classical force field to describe the mixed hybrid perovskite MA x FA 1- x Pb(Br y I 1- y ) 3 for variable composition (∀ x , y ∈ [0, 1]). The model includes Lennard-Jones and Buckingham potentials to describe the interactions between the atoms of the inorganic lattice and the organic molecule, and the AMBER model to describe intramolecular atomic interactions. Most of the parameters of the force field have been obtained by means of a genetic algorithm previously developed to parametrize the CsPb(Br x I 1- x ) 3 perovskite (Balestra et al. J. Mater. Chem. A . 2020 , DOI: 10.1039/d0ta03200j). The algorithm finds the best parameter set that simultaneously fits the DFT energies obtained for several crystalline structures with moderate degrees of distortion with respect to the equilibrium configuration. The resulting model reproduces correctly the XRD patterns, the expansion of the lattice upon I/Br substitution, and the thermal expansion coefficients. We use the model to run classical molecular dynamics simulations with up to 8600 atoms and simulation times of up to 40 ns. From the simulations we have extracted the ion diffusion coefficient of the pure and mixed perovskites, presenting for the first time these values obtained by a fully dynamical method using a transferable model fitted to first-principles calculations. The values here reported can be considered as the theoretical upper limit, that is, without grain boundaries or other defects, for ion migration dynamics induced by halide vacancies in photovoltaic perovskite devices under operational conditions.
Databáze: MEDLINE