Decreased Postural Complexity in Overweight to Obese Children and Adolescents: A Cross-Sectional Study.
Autor: | Wiesinger HP; Department of Sport and Exercise Science, University of Salzburg, Salzburg, Austria., Buchecker M; Department of Sport and Exercise Science, University of Salzburg, Salzburg, Austria., Müller E; Department of Sport and Exercise Science, University of Salzburg, Salzburg, Austria., Stöggl T; Department of Sport and Exercise Science, University of Salzburg, Salzburg, Austria.; Red Bull Athlete Performance Center, Salzburg, Austria., Birklbauer J; Department of Sport and Exercise Science, University of Salzburg, Salzburg, Austria. |
---|---|
Jazyk: | angličtina |
Zdroj: | Frontiers in human neuroscience [Front Hum Neurosci] 2022 Apr 28; Vol. 16, pp. 850548. Date of Electronic Publication: 2022 Apr 28 (Print Publication: 2022). |
DOI: | 10.3389/fnhum.2022.850548 |
Abstrakt: | Introduction: Although a few studies suggest that young overweight to obese children and adolescents (YO) may have impaired postural control compared to young normal-weight (YN) peers, little information exists about how these two groups differ in the quality of the underlying balance strategies employed. Hence, the aim of the present study was a first comprehensive examination of the structural complexity of postural sways in these two cohorts during quiet bilateral standing. Methods: Nineteen YO secondary school students (13.0 ± 1.4 years; male = 10, female = 9) were carefully matched to YN controls (13.0 ± 1.5 years) for age, sex, height, and school. Mediolateral (ML) and anteriorposterior (AP) acceleration signals were recorded with an inertial measurement unit (IMU) positioned at the trunk while standing barefoot in two conditions: firm and foam support surface. The magnitude of postural fluctuations was obtained using the root mean square (RMS). The temporal structure of the signals was analyzed via sample entropy (SEn), largest Lyapunov exponent (LyE), and detrended fluctuation analysis (α-DFA) algorithm. Reliability was assessed using a test-retest design. Results: In both groups, foam standing caused higher postural fluctuations (higher RMS values) and reduced structural complexity (lower SEn values, higher LyE values, higher α-DFA values). In comparison to YN, YO exhibited a higher RMS Discussion: Our outcomes confirm postural control deficits in YO compared to their YN peers and indicate impaired regulatory mechanisms reflected as rigidity. Such less complex patterns usually reflect diverse pathologies, are detrimental to compensate for internal or external perturbations, and are attributed to lower adaptability and task performance. Without targeted balance stimuli, YO likely end in a lifelong vicious circle of mutually dependent poor balance regulation and low physical activity. Competing Interests: TS was employed by the company Red Bull Athlete Performance Center. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. (Copyright © 2022 Wiesinger, Buchecker, Müller, Stöggl and Birklbauer.) |
Databáze: | MEDLINE |
Externí odkaz: |