Impact of protein conformational diversity on AlphaFold predictions.
Autor: | Saldaño T; Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina.; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina., Escobedo N; Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina.; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina., Marchetti J; Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina.; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina., Zea DJ; Independent Researcher, 31400 Toulouse, France., Mac Donagh J; Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina.; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina., Velez Rueda AJ; Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina.; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina., Gonik E; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.; INIFTA (CONICET-UNLP) - Fotoquímica y Nanomateriales para el Ambiente y la Biología (nanoFOT), La Plata, Argentina., García Melani A; IMBICE (CONICET - UNLP), Laboratorio de Electrofisiología, La Plata, Argentina., Novomisky Nechcoff J; Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina., Salas MN; Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina., Peters T; Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires, Argentina., Demitroff N; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.; Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires, Argentina., Fernandez Alberti S; Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina.; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina., Palopoli N; Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina.; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina., Fornasari MS; Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina.; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina., Parisi G; Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina.; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina. |
---|---|
Jazyk: | angličtina |
Zdroj: | Bioinformatics (Oxford, England) [Bioinformatics] 2022 May 13; Vol. 38 (10), pp. 2742-2748. |
DOI: | 10.1093/bioinformatics/btac202 |
Abstrakt: | Motivation: After the outstanding breakthrough of AlphaFold in predicting protein 3D models, new questions appeared and remain unanswered. The ensemble nature of proteins, for example, challenges the structural prediction methods because the models should represent a set of conformers instead of single structures. The evolutionary and structural features captured by effective deep learning techniques may unveil the information to generate several diverse conformations from a single sequence. Here, we address the performance of AlphaFold2 predictions obtained through ColabFold under this ensemble paradigm. Results: Using a curated collection of apo-holo pairs of conformers, we found that AlphaFold2 predicts the holo form of a protein in ∼70% of the cases, being unable to reproduce the observed conformational diversity with the same error for both conformers. More importantly, we found that AlphaFold2's performance worsens with the increasing conformational diversity of the studied protein. This impairment is related to the heterogeneity in the degree of conformational diversity found between different members of the homologous family of the protein under study. Finally, we found that main-chain flexibility associated with apo-holo pairs of conformers negatively correlates with the predicted local model quality score plDDT, indicating that plDDT values in a single 3D model could be used to infer local conformational changes linked to ligand binding transitions. Availability and Implementation: Data and code used in this manuscript are publicly available at https://gitlab.com/sbgunq/publications/af2confdiv-oct2021. Supplementary Information: Supplementary data are available at Bioinformatics online. (© The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.) |
Databáze: | MEDLINE |
Externí odkaz: |