Enhanced distance-dependent fluorescence quenching using size tuneable core shell silica nanoparticles.

Autor: Elsutohy MM; Boots Science Building, School of Pharmacy, University Park Campus, University of Nottingham Nottingham NG7 2RD UK jon.aylott@nottingham.ac.uk.; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Al-Azhar University Assiut 71524 Egypt., Selo A; Boots Science Building, School of Pharmacy, University Park Campus, University of Nottingham Nottingham NG7 2RD UK jon.aylott@nottingham.ac.uk., Chauhan VM; Boots Science Building, School of Pharmacy, University Park Campus, University of Nottingham Nottingham NG7 2RD UK jon.aylott@nottingham.ac.uk., Tendler SJB; Boots Science Building, School of Pharmacy, University Park Campus, University of Nottingham Nottingham NG7 2RD UK jon.aylott@nottingham.ac.uk.; Vice-Chancellor's Department, University of York Heslington York YO10 5DD UK., Aylott JW; Boots Science Building, School of Pharmacy, University Park Campus, University of Nottingham Nottingham NG7 2RD UK jon.aylott@nottingham.ac.uk.
Jazyk: angličtina
Zdroj: RSC advances [RSC Adv] 2018 Oct 19; Vol. 8 (62), pp. 35840-35848. Date of Electronic Publication: 2018 Oct 19 (Print Publication: 2018).
DOI: 10.1039/c8ra05929b
Abstrakt: Silica nanoparticles (SNPs) have been used as favoured platforms for sensor, drug delivery and biological imaging applications, due to their ease of synthesis, size-control and bespoke physico-chemical properties. In this study, we have developed a protocol for the synthesis of size-tuneable SNPs, with diameters ranging from 20 nm to 500 nm, through the optimisation of experimental components required for nanoparticle synthesis. This protocol was also used to prepare fluorescent SNPs, via covalent linkages of fluorophores, to the nanoparticle matrix using 3-aminopropyltriethoxysilane (APTES). This enabled the fabrication of ratiometric, fluorescent, pH-sensitive nanosensors (75 nm diameter) composed SNPs covalently linked to two pH-sensitive fluorescent dyes Oregon Green (OG) and 5(6)-carboxyfluorescein (FAM) and a reference fluorescent dye 5-(6)-carboxytetramethylrhodamine (TAMRA), extending the dynamic range of measurement from pH 3.5 to 7.5. In addition, size-tuneable, core-shell SNPs, covalently linked to a fluorescent TAMRA core were synthesised to investigate distance-dependant fluorescence quenching between TAMRA and black hole quencher 2 (BHQ2®) using nanometre-sized silica shells as physical spacers. The results showed a significant fluorescence quenching could be observed over greater distances than that reported for the classical distance-dependent molecular fluorescence quenching techniques, e.g. the Förster (fluorescence) resonance energy transfer (FRET). The methods and protocols we have detailed in this manuscript will provide the basis for the reproducible production of size tunable SNPs, which will find broad utility in the development of sensors for biological applications.
Competing Interests: The authors declare no conflict of interest.
(This journal is © The Royal Society of Chemistry.)
Databáze: MEDLINE