Three dimensional modeling of atrioventricular valves provides predictive guides for optimal choice of prosthesis.

Autor: Sazzad F; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. faizus@u.nus.edu.; Department of Cardiac, Thoracic and Vascular Surgery, National University Heart Centre, Singapore, Singapore. faizus@u.nus.edu.; Centre for Translational Medicine, National University of Singapore, MD6, 14 Medical Drive, Level-8 (South), Singapore, 117599, Singapore. faizus@u.nus.edu., Goh JH; Department of Biological Sciences, National University of Singapore, Singapore, Singapore., Ong ZX; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore., Almsherqi ZAM; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore., Lakshminarasappa SR; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore., Ramanathan KR; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.; Department of Cardiac, Thoracic and Vascular Surgery, National University Heart Centre, Singapore, Singapore., Kofidis T; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.; Department of Cardiac, Thoracic and Vascular Surgery, National University Heart Centre, Singapore, Singapore.
Jazyk: angličtina
Zdroj: Scientific reports [Sci Rep] 2022 May 06; Vol. 12 (1), pp. 7432. Date of Electronic Publication: 2022 May 06.
DOI: 10.1038/s41598-022-10515-2
Abstrakt: Inaccuracies in intraoperative and preoperative measurements and estimations may lead to adverse outcomes such as patient-prosthesis mismatch. We aim to measure the relation between different dimensions of the atrioventricular valve complex in explanted porcine heart models. After a detailed physical morphology study, a cast of the explanted heart models was made using silicon-based materials. Digital models were obtained from three-dimensional scanning of the casts, showing the measured annulopapillary distance was 2.50 ± 0.18 cm, and 2.75 ± 0.36 cm for anterior and posterior papillary muscles of left ventricle, respectively. There was a significant linear association between the mitral annular circumference to anterior-posterior distance (p = 0.003, 95% CI 0.78-3.06), mitral annular circumference to interpapillary distance (p = 0.009, 95% CI 0.38-2.20), anterior-posterior distance to interpapillary distance (p = 0.02, 95% CI 0.10-0.78). Anterior-posterior distance appeared to be the most important predictor of mitral annular circumference compared to other measured distances. The mean length of the perpendicular distance of the tricuspid annulus, a, was 2.65 ± 0.54 cm; b was 1.77 ± 0.60 cm, and c was 3.06 ± 0.55 cm. Distance c was the most significant predictor for tricuspid annular circumference (p = 0.006, 95% CI 0.28-2.84). The anterior-posterior distance measured by three-dimensional scanning can safely be used to predict the annular circumference of the mitral valve. For the tricuspid valve, the strongest predictor for the circumference is the c-distance. Other measurements made from the positively correlated parameters may be extrapolated to their respective correlated parameters. They can aid surgeons in selecting the optimal prosthesis for the patients and improve procedural planning.
(© 2022. The Author(s).)
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje