Mechanisms underlying initiation of propulsion in guinea pig distal colon.

Autor: Hibberd TJ; College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia., Costa M; College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia., Smolilo DJ; College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia., Keightley LJ; College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia., Brookes SJ; College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia., Dinning PG; College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia., Spencer NJ; College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.
Jazyk: angličtina
Zdroj: American journal of physiology. Gastrointestinal and liver physiology [Am J Physiol Gastrointest Liver Physiol] 2022 Aug 01; Vol. 323 (2), pp. G71-G87. Date of Electronic Publication: 2022 May 03.
DOI: 10.1152/ajpgi.00055.2022
Abstrakt: Colonic motor complexes (CMCs) are a major neurogenic activity in guineapig distal colon. The identity of the enteric neurons that initiate this activity is not established. Specialized intrinsic primary afferent neurons (IPANs) are a major candidate. We aimed to test this hypothesis. To do this, segments of guineapig distal colon were suspended vertically in heated organ baths and propulsive forces acting on a pellet inside the lumen were recorded by isometric force transducer while pharmacological agents were applied to affect IPAN function. In the absence of drugs, CMCs acted periodically on the pellet, generating peak propulsive forces of 12.7 ± 5 g at 0.56 ± 0.22 cpm, lasting 49 ± 17 s (215 preparations; n = 60). Most but not all CMCs were abolished by nicotinic receptor blockade to inhibit fast excitatory synaptic transmission (50/62 preparations; n = 25). Remarkably, CMCs inhibited by hexamethonium were restored by a pharmacological strategy that aimed to enhance IPAN excitability. Thus, CMCs were restored by increased smooth muscle tension (using BAY K8644, bethanechol or carbachol) and by IPAN excitation using phorbol dibutyrate; NK3 receptor agonist, senktide; and partially by αCGRP. The IPAN inhibitor, 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazole-2-one (DCEBIO), decreased CMC frequency. CGRP, but not NK3-receptor antagonists, decreased CMC frequency in naive preparations. Finally, CMCs were blocked by tetrodotoxin, and this was not reversed by any drugs listed above. These results support a major role for IPANs that does not require fast synaptic transmission, in the periodic initiation of neurogenic propulsive contractions. Endogenous CGRP plays a role in determining CMC frequency, whereas further unidentified signaling pathways may determine their amplitude and duration. NEW & NOTEWORTHY The colonic motor complex (CMC) initiates propulsion in guinea pig colon. Here, CMCs evoked by an intraluminal pellet were restored during nicotinic receptor blockade by pharmacological agents that directly or indirectly enhance intrinsic primary afferent neuron (IPAN) excitability. IPANs are the only enteric neuron in colon that contain CGRP. Blocking CGRP receptors decreased CMC frequency, implicating their role in CMC initiation. The results support a role for IPANs in the initiation of CMCs.
Databáze: MEDLINE