Coffea cytogenetics: from the first karyotypes to the meeting with genomics.
Autor: | Sattler MC; Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, ZIP 36.570-900, Brazil. mariana.sattler@ufv.br., de Oliveira SC; Laboratório de Citogenética e Cultura de Tecidos Vegetais, Campus de Alegre, Universidade Federal Do Espírito Santo, Alegre, ES, ZIP 29.500-000, Brazil., Mendonça MAC; Laboratório de Biotecnologia, Instituto Federal Goiano, Campus Rio Verde, Rio Verde, MG, ZIP 75.901-970, Brazil., Clarindo WR; Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, ZIP 36.570-900, Brazil. |
---|---|
Jazyk: | angličtina |
Zdroj: | Planta [Planta] 2022 May 02; Vol. 255 (6), pp. 112. Date of Electronic Publication: 2022 May 02. |
DOI: | 10.1007/s00425-022-03898-z |
Abstrakt: | Main Conclusion: Coffea karyotype organization and evolution has been uncovered by classical cytogenetics and cytogenomics. We revisit these discoveries and present new karyotype data. Coffea possesses ~ 124 species, including C. arabica and C. canephora responsible for commercial coffee production. We reviewed the Coffea cytogenetics, from the first chromosome counting, encompassing the karyotype characterization, chromosome DNA content, and mapping of chromosome portions and DNA sequences, until the integration with genomics. We also showed new data about Coffea karyotype. The 2n chromosome number evidenced the diploidy of almost all Coffea, and the C. arabica tetraploidy, as well as the polyploidy of other hybrids. Since then, other genomic similarities and divergences among the Coffea have been shown by karyotype morphology, nuclear and chromosomal C-value, AT and GC rich chromosome portions, and repetitive sequence and gene mapping. These cytogenomic data allowed us to know and understand the phylogenetic relations in Coffea, as well as their ploidy level and genomic origin, highlighting the relatively recent allopolyploidy. In addition to the euploidy, the role of the mobile elements in Coffea diversification is increasingly more evident, and the comparative analysis of their structure and distribution on the genome of different species is in the spotlight for future research. An integrative look at all these data is fundamental for a deeper understanding of Coffea karyotype evolution, including the key role of polyploidy in C. arabica origin. The 'Híbrido de Timor', a recent natural allotriploid, is also in the spotlight for its potential as a source of resistance genes and model for plant polyploidy research. Considering this, we also present some unprecedented results about the exciting evolutionary history of these polyploid Coffea. (© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.) |
Databáze: | MEDLINE |
Externí odkaz: |