Developmental trajectory of magnetic susceptibility in the healthy rhesus macaque brain.

Autor: Wu J; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China., Peng S; RadioDynamic Healthcare, Shanghai, Shanghai, China., Zhang Y; National Resource Center for Non-human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China., Pan B; RadioDynamic Healthcare, Shanghai, Shanghai, China., Chen H; RadioDynamic Healthcare, Shanghai, Shanghai, China., Hu X; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China., Gong NJ; Vector Lab for Intelligent Medical Imaging and Neural Engineering, International Innovation Center of Tsinghua University, Shanghai, China.
Jazyk: angličtina
Zdroj: NMR in biomedicine [NMR Biomed] 2022 Sep; Vol. 35 (9), pp. e4750. Date of Electronic Publication: 2022 May 14.
DOI: 10.1002/nbm.4750
Abstrakt: Quantitative susceptibility mapping (QSM) is used to quantify iron deposition in non-human primates in our study. Although QSM has many applications in detecting iron deposits in the human brain, including the distribution of iron deposits in specific brain regions, the change of iron deposition with aging, and the comparison of iron deposits between diseased groups and healthy controls, few studies have applied QSM to non-human primates, while most animal brain experiments focus on biochemical and anatomical results instead of non-invasive experiments. Additionally, brain imaging in children's research is difficult, but can be substituted using young rhesus monkeys, which are very similar to humans, as research animals. Therefore, understanding the relationship between iron deposition and age in rhesus macaques' brains can offer insights into both the developmental trajectory of magnetic susceptibility in the animal model and the correlated evidence in children's research. Twenty-three healthy rhesus macaque monkeys (23 ± 7.85 years, range 2-29 years) were included in this research. Seven regions of interest (ROIs-globus pallidus, substantia nigra, dentate nucleus, caudate nucleus, putamen, thalamus, red nucleus) have been analyzed in terms of QSM and R 2 * (apparent relaxation rate). Susceptibility in most ROIs correlated significantly with the growth of age, similarly to the results for R 2 *, but showed different trends in the thalamus and red nucleus, which may be caused by the different sensitivities of myelination and iron deposition in R 2 * and QSM analysis. By assessing the correlation between iron content and age in healthy rhesus macaques' brains using QSM, we provide a piece of pilot information on normality for advanced animal disease models. Meanwhile, this study also could serve as the normative basis for further clinical studies using QSM for iron content quantification. Due to the comparison of the susceptibility on the same experimental objects, this research can also provide practical support for future research on characteristics for QSM and R 2 *.
(© 2022 John Wiley & Sons Ltd.)
Databáze: MEDLINE