Breaking with the Principles of Coreduction to Form Stoichiometric Intermetallic PdCu Nanoparticles.
Autor: | Mathiesen JK; Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, Copenhagen, 2100, Denmark., Bøjesen ED; Interdisciplinary Nanoscience Center & Aarhus University Centre for Integrated Materials Research, Aarhus University, Gustav Wieds Vej 14, Aarhus C, 8000, Denmark., Pedersen JK; Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, Copenhagen, 2100, Denmark., Kjaer ETS; Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, Copenhagen, 2100, Denmark., Juelsholt M; Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK., Cooper S; Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, Copenhagen, 2100, Denmark., Quinson J; Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, Copenhagen, 2100, Denmark., Anker AS; Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, Copenhagen, 2100, Denmark., Cutts G; Diamond Light Source, Harwell Campus, Oxford, OX11 0DE, UK., Keeble DS; Diamond Light Source, Harwell Campus, Oxford, OX11 0DE, UK., Thomsen MS; Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, Copenhagen, 2100, Denmark., Rossmeisl J; Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, Copenhagen, 2100, Denmark., Jensen KMØ; Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, Copenhagen, 2100, Denmark. |
---|---|
Jazyk: | angličtina |
Zdroj: | Small methods [Small Methods] 2022 Jun; Vol. 6 (6), pp. e2200420. Date of Electronic Publication: 2022 Apr 23. |
DOI: | 10.1002/smtd.202200420 |
Abstrakt: | Intermetallic nanoparticles (NPs) have shown enhanced catalytic properties as compared to their disordered alloy counterparts. To advance their use in green energy, it is crucial to understand what controls the formation of intermetallic NPs over alloy structures. By carefully selecting the additives used in NP synthesis, it is here shown that monodisperse, intermetallic PdCu NPs can be synthesized in a controllable manner. Introducing the additives iron(III) chloride and ascorbic acid, both morphological and structural control can be achieved. Combined, these additives provide a synergetic effect resulting in precursor reduction and defect-free growth; ultimately leading to monodisperse, single-crystalline, intermetallic PdCu NPs. Using in situ X-ray total scattering, a hitherto unknown transformation pathway is reported that diverges from the commonly reported coreduction disorder-order transformation. A Cu-rich structure initially forms, which upon the incorporation of Pd(0) and atomic ordering forms intermetallic PdCu NPs. These findings underpin that formation of stoichiometric intermetallic NPs is not limited by standard reduction potential matching and coreduction mechanisms, but is instead driven by changes in the local chemistry. Ultimately, using the local chemistry as a handle to tune the NP structure might open new opportunities to expand the library of intermetallic NPs by exploiting synthesis by design. (© 2022 The Authors. Small Methods published by Wiley-VCH GmbH.) |
Databáze: | MEDLINE |
Externí odkaz: |