Direct Spectroscopic Evidence of Magnetic Proximity Effect in MoS 2 Monolayer on Graphene/Co.

Autor: Voroshnin V; Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24/25, Potsdam 14476, Germany., Tarasov AV; St. Petersburg State University, St. Petersburg 198504, Russia., Bokai KA; St. Petersburg State University, St. Petersburg 198504, Russia., Chikina A; Paul Scherrer Institute, Forschungsstrasse 111, Villigen PSI 5232, Switzerland., Senkovskiy BV; II. Physikalisches Institut, Universität zu Köln, Zülpicher Strasse 77, Köln 50937, Germany., Ehlen N; II. Physikalisches Institut, Universität zu Köln, Zülpicher Strasse 77, Köln 50937, Germany., Usachov DY; St. Petersburg State University, St. Petersburg 198504, Russia., Grüneis A; II. Physikalisches Institut, Universität zu Köln, Zülpicher Strasse 77, Köln 50937, Germany., Krivenkov M; Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin 12489, Germany., Sánchez-Barriga J; Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin 12489, Germany., Fedorov A; IFW Dresden, Leibniz Institute for Solid State and Materials Research, D-01171, Dresden 01069, Germany.
Jazyk: angličtina
Zdroj: ACS nano [ACS Nano] 2022 May 24; Vol. 16 (5), pp. 7448-7456. Date of Electronic Publication: 2022 Apr 20.
DOI: 10.1021/acsnano.1c10391
Abstrakt: A magnetic field modifies optical properties and provides valley splitting in a molybdenum disulfide (MoS 2 ) monolayer. Here we demonstrate a scalable approach to the epitaxial synthesis of MoS 2 monolayer on a magnetic graphene/Co system. Using spin- and angle-resolved photoemission spectroscopy we observe a magnetic proximity effect that causes a 20 meV spin-splitting at the Γ̅ point and canting of spins at the K̅ point in the valence band toward the in-plane direction of cobalt magnetization. Our density functional theory calculations reveal that the in-plane spin component at K̅ is localized on Co atoms in the valence band, while in the conduction band it is localized on the MoS 2 layer. The calculations also predict a 16 meV spin-splitting at the Γ̅ point and 8 meV K̅- K ' ¯ valley asymmetry for an out-of-plane magnetization. These findings suggest control over optical transitions in MoS 2 via Co magnetization. Our estimations show that the magnetic proximity effect is equivalent to the action of the magnetic field as large as 100 T.
Databáze: MEDLINE