Overview of Noninterpretive Artificial Intelligence Models for Safety, Quality, Workflow, and Education Applications in Radiology Practice.
Autor: | Tadavarthi Y; Department of Medicine, Medical College of Georgia, Augusta, Ga (Y.T.); Department of Radiology and Imaging Sciences (V.M., W.W., H.Z., M.H., E.K., N.S., J.G., H.T.), School of Medicine (N.B.), and Department of Biomedical Informatics (I.B.), Emory University, 1364 E Clifton Rd NE, Atlanta, GA 30322; and Southend University Hospital NHS Foundation Trust, Westcliff-on-Sea, UK (A.P.)., Makeeva V; Department of Medicine, Medical College of Georgia, Augusta, Ga (Y.T.); Department of Radiology and Imaging Sciences (V.M., W.W., H.Z., M.H., E.K., N.S., J.G., H.T.), School of Medicine (N.B.), and Department of Biomedical Informatics (I.B.), Emory University, 1364 E Clifton Rd NE, Atlanta, GA 30322; and Southend University Hospital NHS Foundation Trust, Westcliff-on-Sea, UK (A.P.)., Wagstaff W; Department of Medicine, Medical College of Georgia, Augusta, Ga (Y.T.); Department of Radiology and Imaging Sciences (V.M., W.W., H.Z., M.H., E.K., N.S., J.G., H.T.), School of Medicine (N.B.), and Department of Biomedical Informatics (I.B.), Emory University, 1364 E Clifton Rd NE, Atlanta, GA 30322; and Southend University Hospital NHS Foundation Trust, Westcliff-on-Sea, UK (A.P.)., Zhan H; Department of Medicine, Medical College of Georgia, Augusta, Ga (Y.T.); Department of Radiology and Imaging Sciences (V.M., W.W., H.Z., M.H., E.K., N.S., J.G., H.T.), School of Medicine (N.B.), and Department of Biomedical Informatics (I.B.), Emory University, 1364 E Clifton Rd NE, Atlanta, GA 30322; and Southend University Hospital NHS Foundation Trust, Westcliff-on-Sea, UK (A.P.)., Podlasek A; Department of Medicine, Medical College of Georgia, Augusta, Ga (Y.T.); Department of Radiology and Imaging Sciences (V.M., W.W., H.Z., M.H., E.K., N.S., J.G., H.T.), School of Medicine (N.B.), and Department of Biomedical Informatics (I.B.), Emory University, 1364 E Clifton Rd NE, Atlanta, GA 30322; and Southend University Hospital NHS Foundation Trust, Westcliff-on-Sea, UK (A.P.)., Bhatia N; Department of Medicine, Medical College of Georgia, Augusta, Ga (Y.T.); Department of Radiology and Imaging Sciences (V.M., W.W., H.Z., M.H., E.K., N.S., J.G., H.T.), School of Medicine (N.B.), and Department of Biomedical Informatics (I.B.), Emory University, 1364 E Clifton Rd NE, Atlanta, GA 30322; and Southend University Hospital NHS Foundation Trust, Westcliff-on-Sea, UK (A.P.)., Heilbrun M; Department of Medicine, Medical College of Georgia, Augusta, Ga (Y.T.); Department of Radiology and Imaging Sciences (V.M., W.W., H.Z., M.H., E.K., N.S., J.G., H.T.), School of Medicine (N.B.), and Department of Biomedical Informatics (I.B.), Emory University, 1364 E Clifton Rd NE, Atlanta, GA 30322; and Southend University Hospital NHS Foundation Trust, Westcliff-on-Sea, UK (A.P.)., Krupinski E; Department of Medicine, Medical College of Georgia, Augusta, Ga (Y.T.); Department of Radiology and Imaging Sciences (V.M., W.W., H.Z., M.H., E.K., N.S., J.G., H.T.), School of Medicine (N.B.), and Department of Biomedical Informatics (I.B.), Emory University, 1364 E Clifton Rd NE, Atlanta, GA 30322; and Southend University Hospital NHS Foundation Trust, Westcliff-on-Sea, UK (A.P.)., Safdar N; Department of Medicine, Medical College of Georgia, Augusta, Ga (Y.T.); Department of Radiology and Imaging Sciences (V.M., W.W., H.Z., M.H., E.K., N.S., J.G., H.T.), School of Medicine (N.B.), and Department of Biomedical Informatics (I.B.), Emory University, 1364 E Clifton Rd NE, Atlanta, GA 30322; and Southend University Hospital NHS Foundation Trust, Westcliff-on-Sea, UK (A.P.)., Banerjee I; Department of Medicine, Medical College of Georgia, Augusta, Ga (Y.T.); Department of Radiology and Imaging Sciences (V.M., W.W., H.Z., M.H., E.K., N.S., J.G., H.T.), School of Medicine (N.B.), and Department of Biomedical Informatics (I.B.), Emory University, 1364 E Clifton Rd NE, Atlanta, GA 30322; and Southend University Hospital NHS Foundation Trust, Westcliff-on-Sea, UK (A.P.)., Gichoya J; Department of Medicine, Medical College of Georgia, Augusta, Ga (Y.T.); Department of Radiology and Imaging Sciences (V.M., W.W., H.Z., M.H., E.K., N.S., J.G., H.T.), School of Medicine (N.B.), and Department of Biomedical Informatics (I.B.), Emory University, 1364 E Clifton Rd NE, Atlanta, GA 30322; and Southend University Hospital NHS Foundation Trust, Westcliff-on-Sea, UK (A.P.)., Trivedi H; Department of Medicine, Medical College of Georgia, Augusta, Ga (Y.T.); Department of Radiology and Imaging Sciences (V.M., W.W., H.Z., M.H., E.K., N.S., J.G., H.T.), School of Medicine (N.B.), and Department of Biomedical Informatics (I.B.), Emory University, 1364 E Clifton Rd NE, Atlanta, GA 30322; and Southend University Hospital NHS Foundation Trust, Westcliff-on-Sea, UK (A.P.). |
---|---|
Jazyk: | angličtina |
Zdroj: | Radiology. Artificial intelligence [Radiol Artif Intell] 2022 Feb 02; Vol. 4 (2), pp. e210114. Date of Electronic Publication: 2022 Feb 02 (Print Publication: 2022). |
DOI: | 10.1148/ryai.210114 |
Abstrakt: | Artificial intelligence has become a ubiquitous term in radiology over the past several years, and much attention has been given to applications that aid radiologists in the detection of abnormalities and diagnosis of diseases. However, there are many potential applications related to radiologic image quality, safety, and workflow improvements that present equal, if not greater, value propositions to radiology practices, insurance companies, and hospital systems. This review focuses on six major categories for artificial intelligence applications: study selection and protocoling, image acquisition, worklist prioritization, study reporting, business applications, and resident education. All of these categories can substantially affect different aspects of radiology practices and workflows. Each of these categories has different value propositions in terms of whether they could be used to increase efficiency, improve patient safety, increase revenue, or save costs. Each application is covered in depth in the context of both current and future areas of work. Keywords: Use of AI in Education, Application Domain, Supervised Learning, Safety © RSNA, 2022. Competing Interests: Disclosures of Conflicts of Interest: Y.T. No relevant relationships. V.M. No relevant relationships. W.W. No relevant relationships. H.Z. No relevant relationships. A.P. Consulting fee or honorarium from QMC. N.B. No relevant relationships. M.H. No relevant relationships. E.K. Publications Ethics Committee for RSNA journals. N.S. Advisor to a resident who received an RSNA Research & Education Foundation grant. The project is entitled HL7-Shield: A Versatile HL7 Listener Software for Automated Follow-up Tracking; pending patent for HL-7 Shield (Emory University is applying for a software patent for an AI approach to findings notification, this author listed as contributor). I.B. No relevant relationships. J.G. Future of Work Grant NIH NIBIB MIDRC grant (not related to this work); associate editor and trainee editorial board lead for Radiology: Artificial Intelligence. H.T. Consultant for BioData Consortium and Sirona Medical; grant from Kheiron Medical for institution; owner of Lightbox AI. (2022 by the Radiological Society of North America, Inc.) |
Databáze: | MEDLINE |
Externí odkaz: |