Limiting calcium overload after cardiac arrest: The role of human albumin in controlled automated reperfusion of the whole body.

Autor: Pooth JS; Department of Cardiovascular Surgery, 9202University Heart Center Freiburg, Faculty of Medicine, 9174University of Freiburg, Freiburg, Germany., Brixius SJ; Department of Cardiovascular Surgery, 9202University Heart Center Freiburg, Faculty of Medicine, 9174University of Freiburg, Freiburg, Germany., Scherer C; Department of Cardiovascular Surgery, 9202University Heart Center Freiburg, Faculty of Medicine, 9174University of Freiburg, Freiburg, Germany., Diel P; Department of Cardiovascular Surgery, 9202University Heart Center Freiburg, Faculty of Medicine, 9174University of Freiburg, Freiburg, Germany., Liu Y; Department of Cardiovascular Surgery, 9202University Heart Center Freiburg, Faculty of Medicine, 9174University of Freiburg, Freiburg, Germany., Taunyane IC; Department of Cardio-Thoracic Surgery, University of the Witwatersrand, Johannesburg, South Africa., Damjanovic D; Department of Cardiovascular Surgery, 9202University Heart Center Freiburg, Faculty of Medicine, 9174University of Freiburg, Freiburg, Germany., Wolkewitz M; Institute of Medical Biometry and Statistics, 9174University of Freiburg, Freiburg, Germany., Haberstroh J; Department of Experimental Surgery, Center for Experimental Models and Transgenic Service, University Medical Center Freiburg, Faculty of Medicine, 9174University of Freiburg, Freiburg, Germany., Benk C; Department of Cardiovascular Surgery, 9202University Heart Center Freiburg, Faculty of Medicine, 9174University of Freiburg, Freiburg, Germany., Trummer G; Department of Cardiovascular Surgery, 9202University Heart Center Freiburg, Faculty of Medicine, 9174University of Freiburg, Freiburg, Germany., Beyersdorf F; Department of Cardiovascular Surgery, 9202University Heart Center Freiburg, Faculty of Medicine, 9174University of Freiburg, Freiburg, Germany.
Jazyk: angličtina
Zdroj: Perfusion [Perfusion] 2023 Apr; Vol. 38 (3), pp. 622-630. Date of Electronic Publication: 2022 Mar 26.
DOI: 10.1177/02676591211073779
Abstrakt: Background: Regarding the overall inadequate results after cardiopulmonary resuscitation, the development of new treatment concepts is urgently needed. Controlled Automated Reperfusion of the whoLe body (CARL) represents a therapy bundle to control the conditions of reperfusion and the composition of the reperfusate after cardiac arrest (CA). The aim of this study was to investigate the plasma expander's role in the CARL priming solution and examine its mechanism of action.
Methods: Viscosity, osmolality, colloid osmotic pressure (COP), pH and calcium binding of different priming solutions were measured in vitro and compared to in vivo data. N = 16 pigs were allocated to receive CARL following 20 min of untreated CA with either human albumin 20% (HA, N = 8) or gelatin polysuccinate 4% (GP, N = 8). Blood gas analyses were performed during the first hour of reperfusion and catecholamine and fluid requirements were recorded. Neurological outcome was assessed by neurological deficit scoring (NDS) on the seventh day.
Results: In vitro, addition of HA to the CARL priming solution resulted in higher COP and higher calcium-binding than GP. In vivo, treatment with HA led to greater reduction of ionized calcium and higher extracorporeal flows within the first 30 min of reperfusion with no difference in catecholamine support and fluid requirement. Seven-day survival of 75% with no difference in NDS was observed in both groups.
Conclusions: Our data show that the plasma expander in the CARL priming solution has a significant effect on the initial reperfusate and can potentially influence the course of resuscitation. However, seven-day survival and NDS did not differ between groups.
Databáze: MEDLINE