A new benchmark of soft X-ray transition energies of Ne , CO 2 , and SF 6 : paving a pathway towards ppm accuracy.
Autor: | Stierhof J; Dr. Karl Remeis-Observatory and Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Sternwartstr. 7, 96049 Bamberg, Germany., Kühn S; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany., Winter M; Institute of Theoretical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7/B2, 91058 Erlangen, Germany.; CNRS, Institut NEEL, Université Grenoble Alpes, CNRS, Institut NEEL, 25 rue des Martyrs BP 166, 38042 Grenoble Cedex 9, France., Micke P; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany.; CERN, 1211 Geneva 23, Switzerland., Steinbrügge R; Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany., Shah C; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany.; NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, MD 20771 USA.; Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550 USA., Hell N; Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550 USA., Bissinger M; Dr. Karl Remeis-Observatory and Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Sternwartstr. 7, 96049 Bamberg, Germany., Hirsch M; Dr. Karl Remeis-Observatory and Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Sternwartstr. 7, 96049 Bamberg, Germany., Ballhausen R; Dr. Karl Remeis-Observatory and Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Sternwartstr. 7, 96049 Bamberg, Germany., Lang M; Dr. Karl Remeis-Observatory and Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Sternwartstr. 7, 96049 Bamberg, Germany., Gräfe C; Dr. Karl Remeis-Observatory and Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Sternwartstr. 7, 96049 Bamberg, Germany., Wipf S; Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany., Cumbee R; NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, MD 20771 USA.; Department of Astronomy, University of Maryland, College Park, MD 20742 USA., Betancourt-Martinez GL; Institut de Recherche en Astrophysique et Planétologie, 9, avenue du Colonel Roche BP 44346, 31028 Toulouse Cedex 4, France., Park S; Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, South Korea., Niskanen J; Institute for Methods and Instrumentation in Synchrotron Radiation Research G-ISRR, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany., Chung M; Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, South Korea., Porter FS; NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, MD 20771 USA., Stöhlker T; Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany.; GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany.; Helmholtz-Institut Jena, Fröbelstieg 3, 07743 Jena, Germany., Pfeifer T; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany., Brown GV; Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550 USA., Bernitt S; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany.; Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany.; GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany.; Helmholtz-Institut Jena, Fröbelstieg 3, 07743 Jena, Germany., Hansmann P; Institute of Theoretical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7/B2, 91058 Erlangen, Germany., Wilms J; Dr. Karl Remeis-Observatory and Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Sternwartstr. 7, 96049 Bamberg, Germany., Crepso López-Urrutia JR; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany., Leutenegger MA; NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, MD 20771 USA. |
---|---|
Jazyk: | angličtina |
Zdroj: | The European physical journal. D, Atomic, molecular, and optical physics [Eur Phys J D At Mol Opt Phys] 2022; Vol. 76 (3), pp. 38. Date of Electronic Publication: 2022 Mar 01. |
DOI: | 10.1140/epjd/s10053-022-00355-0 |
Abstrakt: | Abstract: A key requirement for the correct interpretation of high-resolution X-ray spectra is that transition energies are known with high accuracy and precision. We investigate the K-shell features of Ne , CO 2 , and SF 6 gases, by measuring their photo ion-yield spectra at the BESSY II synchrotron facility simultaneously with the 1s- n p fluorescence emission of He-like ions produced in the Polar-X EBIT. Accurate ab initio calculations of transitions in these ions provide the basis of the calibration. While the CO 2 result agrees well with previous measurements, the SF 6 spectrum appears shifted by ∼ 0.5 eV, about twice the uncertainty of the earlier results. Our result for Ne shows a large departure from earlier results, but may suffer from larger systematic effects than our other measurements. The molecular spectra agree well with our results of time-dependent density functional theory. We find that the statistical uncertainty allows calibrations in the desired range of 1-10 meV, however, systematic contributions still limit the uncertainty to ∼ 40-100 meV, mainly due to the temporal stability of the monochromator energy scale. Combining our absolute calibration technique with a relative energy calibration technique such as photoelectron energy spectroscopy will be necessary to realize its full potential of achieving uncertainties as low as 1-10 meV. (© The Author(s) 2022.) |
Databáze: | MEDLINE |
Externí odkaz: |