Can hypoosmotic shock and calcium influx lead to translocation of aquaporin-1 in shrimp muscle cells?

Autor: Foguesatto K; Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, Brasil., Lopes FM; Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, Brasil., Boyle RT; Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, Brasil.; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, Brasil., Nery LEM; Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, Brasil.; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, Brasil., Souza MM; Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, Brasil.; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, Brasil.
Jazyk: angličtina
Zdroj: Cell biology international [Cell Biol Int] 2022 Jun; Vol. 46 (6), pp. 976-985. Date of Electronic Publication: 2022 Mar 22.
DOI: 10.1002/cbin.11788
Abstrakt: The physiological variations during the crustacean molting cycle have intrigued researchers for many years. Maintaining osmotic homeostasis in the face of hemolymph dilution and dealing with dynamic intracellular and extracellular calcium fluctuations are challenges these animals continuously confront. It has recently been shown that water channels present in the cell membrane (aquaporins) are essential for water uptake during premolt and postmolt. This study aims to investigate whether hypoosmotic shock and intracellular and extracellular calcium variations can lead to translocation of Aquaporin 1 (AQP-1) from the intracellular region to the plasma membrane during premolt and postmolt, thus allowing increased water flow in these stages. For this, we investigate in vitro the rapid change of AQP-1 positions in the abdominal muscle cells in the freshwater shrimp, Palaemon argentinus. Using cell volume analysis and immunohistochemistry, we show that hypoosmotic conditions and an elevation of the intracellular and extracellular calcium concentrations are concurrent with the translocation of AQP-1 to the plasma membrane. These results indicate that calcium flux and hypoosmotic shock may be regulators of AQP 1 in the translocation process.
(© 2022 International Federation for Cell Biology.)
Databáze: MEDLINE