Deciphering Photoinduced Charge Transfer Dynamics in a Cross-Linked Graphene-Dye Nanohybrid.

Autor: Ross AM; Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy., Osella S; Chemical and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland., Policht VR; Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy., Zheng M; Chemical Sciences Department, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy., Maggini M; Chemical Sciences Department, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy., Marangi F; Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.; Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascolo, 70/3 Milano 20133, Italy., Cerullo G; Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy., Gatti T; Center for Materials Research, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany., Scotognella F; Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.; Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascolo, 70/3 Milano 20133, Italy.
Jazyk: angličtina
Zdroj: The journal of physical chemistry. C, Nanomaterials and interfaces [J Phys Chem C Nanomater Interfaces] 2022 Feb 24; Vol. 126 (7), pp. 3569-3581. Date of Electronic Publication: 2022 Feb 16.
DOI: 10.1021/acs.jpcc.1c10570
Abstrakt: The search for synthetic materials that mimic natural photosynthesis by converting solar energy into other more useful forms of energy is an ever-growing research endeavor. Graphene-based materials, with their exceptional electronic and optical properties, are exemplary candidates for high-efficiency solar energy harvesting devices. High photoactivity can be conveniently achieved by functionalizing graphene with small molecule organic semiconductors whose band-gaps can be tuned by structural modification, leading to interactions between the π-conjugated electronic systems in both the semiconductor and graphene. Here we investigate the ultrafast transient optical properties of a cross-linked graphene-dye (diphenyl-dithiophenediketopyrrolopyrrole) nanohybrid material, in which oligomers of the organic semiconductor dye are covalently bound to a random network of few-layer graphene flakes, and compare the results to those obtained for the reference dye monomer. Using a combination of ultrafast transient absorption and two-dimensional electronic spectroscopy, we provide substantial evidence for photoinduced charge transfer that occurs within 18 ps in the nanohybrid system. Notably, subpicosecond photoinduced torsional relaxation observed in the constituent dye monomer is absent in the cross-linked nanohybrid system. Through density functional theory calculations, we compare the competing effects of covalent bonding, increasing conjugation length, and the presence of multiple graphene flakes. We find evidence that the observed ultrafast charge transfer process occurs through a superexchange mechanism in which the oligomeric dye bridge provides virtual states enabling charge transfer between graphene-dye covalent bond sites.
Competing Interests: The authors declare no competing financial interest.
(© 2022 The Authors. Published by American Chemical Society.)
Databáze: MEDLINE