Dietary fiber modulates abdominal fat deposition associated with cecal microbiota and metabolites in yellow chickens.

Autor: Cui X; College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P.R. China; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P. R. China., Gou Z; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P. R. China., Jiang Z; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P. R. China., Li L; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P. R. China., Lin X; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P. R. China., Fan Q; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P. R. China., Wang Y; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P. R. China., Jiang S; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P. R. China. Electronic address: jsqun3100@sohu.com.
Jazyk: angličtina
Zdroj: Poultry science [Poult Sci] 2022 Apr; Vol. 101 (4), pp. 101721. Date of Electronic Publication: 2022 Jan 13.
DOI: 10.1016/j.psj.2022.101721
Abstrakt: Excessive deposition of abdominal fat is a public concern in the yellow chicken industry related to human nutrition. The common practice of nutritionists is to increase the fiber content in feed to control abdominal fat deposition of chickens. Corncob meal (CCM) is the cheapest ingredient widely used in animal diets. The possible effects of CCM on chicken abdominal fat deposition and the possible mechanism involving cecal microbiota remain unknown. The objectives of this study were to investigate the effects of CCM in modulating abdominal fat deposition and the role of the cecal microbiota and their metabolites. A total of 200 ninety-day-old Huxu female chickens were divided into 2 dietary treatments, each with 10 replicates of 10 birds, and were fed two finisher diets, from 90 to 135 d. The diets were a typical corn-soybean control diet (CON) and that diet with CCM partially replacing corn and corn gluten meal. Results showed that the CCM diet markedly decreased live weight and abdominal fat percentage (P < 0.05); chickens fed the CCM diet exhibited lower (P < 0.01) expression in abdominal fat of fatty acid binding protein 4 (FABP4), stearoyl-CoA desaturase (SCD), fatty acid synthase (FAS), and peroxisome proliferator-activated receptor γ (PPARγ) but higher (P < 0.05) expression of estrogen receptor alpha (ESR1). The CCM increased the abundance of Akkermansia (P < 0.05) and markedly reduced the relative cecal abundance of Phascolarctobacterium (P < 0.01), Rikenellaceae (P < 0.05), and Faecalibacterium (P < 0.01). The metabolomic and biochemical analyses demonstrated that the CCM diet increased (P < 0.05) the concentrations of butyrate in cecal contents. The majority of the metabolites in cecal digesta with differences in abundance were organic acids. The CCM diet increased (P < 0.05) contents of (R)-5-diphosphomevalote, pantothenic acid, 2-epi-5-epi-valiolone 7-phosphate, D-ribose 5-diphosphate, arbutin 6-phosphate, D-ribitol 5-phosphate, undecanoic acid, nicotinic acid, 4-methyl-2-oxovaleric acid, while decreasing (P < 0.05) those of oleic acid, glutaric acid, adipic acid, suberic acid, and L-fuculose 1-phosphate. In conclusion, these findings demonstrated that the dietary CCM treatment significantly decreased abdominal fat and altered the cecal microbiota and metabolite profiles of the yellow chickens.
(Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.)
Databáze: MEDLINE