Spatial Analysis of Notified Zika Virus Congenital Syndrome, Maranhão, 2015 to 2018.

Autor: Falcão Neto PAO; Universidade Federal do Maranhão, Faculdade de Medicina - São Luís (MA), Brasil., Branco MDRFC; Universidade Federal do Maranhão, Programa de Pós-Graduação em Saúde Coletiva - São Luís (MA), Brasil., Costa SDSB; Universidade Federal do Maranhão, Programa de Pós-Graduação em Saúde Coletiva - São Luís (MA), Brasil., Câmara APB; Universidade Federal do Maranhão, Programa de Pós-Graduação em Saúde Coletiva - São Luís (MA), Brasil., Marques TMNF; Universidade Ceuma, Curso de Biomedicina - São Luís (MA), Brasil., Araujo AS; Universidade Federal do Maranhão, Programa de Pós-Graduação em Saúde e Ambiente - São Luís (MA), Brasil., Loureiro FHF; Universidade Federal do Maranhão, Programa de Pós-Graduação em Saúde Coletiva - São Luís (MA), Brasil., Dias Júnior JJ; Universidade Federal do Maranhão, Programa de Pós-Graduação em Saúde Coletiva - São Luís (MA), Brasil., Silva MDSD; Secretaria Municipal de Saúde - São Luís (MA), Brasil., Queiroz RCS; Universidade Federal do Maranhão, Programa de Pós-Graduação em Saúde Coletiva - São Luís (MA), Brasil., Ribeiro MRC; Universidade Federal do Maranhão, Programa de Pós-Graduação em Saúde Coletiva - São Luís (MA), Brasil., Kulkarni MA; University of Ottawa, School of Epidemiology and Public Health - Ottawa, Canada., Silva AAMD; Universidade Federal do Maranhão, Programa de Pós-Graduação em Saúde Coletiva - São Luís (MA), Brasil., Santos AMD; Universidade Federal do Maranhão, Programa de Pós-Graduação em Saúde Coletiva - São Luís (MA), Brasil.
Jazyk: Portuguese; English
Zdroj: Revista brasileira de epidemiologia = Brazilian journal of epidemiology [Rev Bras Epidemiol] 2022 Feb 14; Vol. 25, pp. e220002. Date of Electronic Publication: 2022 Feb 14 (Print Publication: 2022).
DOI: 10.1590/1980-549720220002
Abstrakt: Objective: To identify spatial patterns in cases of changes in growth and development related to Zika virus infection and other infectious etiologies (denominated Zika virus congenital syndrome in this study) reported in Maranhão from 2015 to 2018 and their relation with socioeconomic and demographic variables.
Methods: Ecological study of notified Zika virus congenital syndrome cases in the 217 cities of Maranhão, Brasil. Spatial autocorrelation was calculated using GeoDa 1.14 software and the local and global (I) Moran's index in univariate and bivariate analyses on Zika virus congenital syndrome incidence rate with Municipal Human Development Index (MHDI), population density, Gini coefficient and the cities' time of administrative political emancipation. Local Moran's Index was calculated to identify clusters with significant spatial autocorrelation.
Results: Spatial autocorrelation was checked in univariate analysis of the incidence rate of Zika virus congenital syndrome (I=0,494; p=0,001) and positive correlation in bivariate analysis of the incidence rate with Municipal Human Development Index (I=0,252; p=0,001), population density (I=0,338; p=0,001) and the cities' time of administrative political emancipation (I=0,134; p=0,001). The correlation between incidence rate with Gini coefficient was not significant (I= -0,033; p=0,131). Five high-incidence clusters were found in distinct areas of the state.
Conclusions: Cities with higher MHDI, higher population density and more years of administrative political emancipation had more cases of Zika virus congenital syndrome notified.
Databáze: MEDLINE